

Quality Committee Handbook

Release: 2.0.2

created by

Quality Committee

1

 ​Revision History
Version Date Reviser Description Status

1.0 2016-06-20 M. Jung Alignment in AC/QC conference call Released

1.0.11 2016-08-12 M. Jung Removed UML tool discussion,
added UML tool decision in design
documentation,
Added configuration documentation,
Removed stale “Related docs” appendix
Removed “Meeting structure” appendix
(structure already implemented).
Added details for commit rules, library
usage, and GUI styleguide application.

Draft for
v1.1

1.1 2016-08-18 A. Goering Alignment in AC/QC conference call Released

1.1.1 2017-09-11 A. Goering Added detailed package naming,
cleaned up.

Released

2.0 2018-09-07 M. Berth,
C. Dohle,
M. Gründler,
T. Meyer,
E. Schlenker
and others

Clarification and extension of chapters
2-4 and appendix

Draft

2.0.1 2018-10-15 E. Schlenker Revision after translation and lectoring Released

2.0.2 2020-02-10 E.Schlenker Added OWASP Dependency Check Released

Formal
According to a decision of the Quality Committee, this document is written in english.

Document control:

Author: Dr. Martin Jung, ​martin.jung@develop-group.de​ (representative of the quality
committee)
Reviewed by: SC, PPC, and AC of openKONSEQUENZ
Released by: QC
This document is licensed under the Eclipse Public License Version 1.0 ("EPL")
Released versions will be made available via the openKONSEQUENZ web site.

openKONSEQUENZ Quality Committee Handbook 2/40

mailto:martin.jung@develop-group.de

Related documents
Document Description

BDEW Whitepaper Whitepaper on requirements for secure control and
telecommunication systems by the german BDEW Bundesverband
der Energie und Wasserwirtschaft e.V.
https://www.bdew.de/internet.nsf/id/232E01B4E0C52139C1257A5D0
0429968/$file/OE-BDEW-Whitepaper_Secure_Systems%20V1.1%2
02015.pdf

BSI-Standard-100-2 The IT-Grundschutz Methodology is a BSI methodology for effecitve
management of the information security for adaption to the situation
of a specific organization.
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publication
s/BSIStandards/standard_100-2_e_pdf

ISO/IEC 25010 International Organization for Standardization ISO/IEC 25010:2011
Systems and software engineering -- Systems and software Quality
https://www.iso.org/standard/35733.html

ISO/IEC 27000 International Organization for Standardization ISO/IEC 27000:2018
Information technology -- Security techniques -- Information security
management systems -- Overview and vocabulary
https://www.iso.org/standard/73906.html

oK-Charter The openKONSEQUENZ charter
https://wiki.eclipse.org/images/f/f5/20150623a_openKonsequenz_V1
4-3_%283%29.pdf

oK-GUI-
Styleguide

Style guide for module developers of openKONSEQUENZ modules
according to the graphical user interface.
http://wiki.openkonsequenz.de

oK-Interface-
Overview

AC handbook external but related AC document (appendix),
where the Interfaces and the overall oK-CIM-Profile of oK-Modules
are described in short as well as showing the Building Block View
Level 1.
(​https://wiki.eclipse.org/OpenKONSEQUENZACQCRichtlinien​)

oK-Module-
Tender-Call

The openKONSEQUENZ project planning committee prepares a
document which describes the requirements to the development for
each module. With this document it calls for tenders at software
developers (module individual)

oK-Module-Tender The software developers answer to the oK-Module-Tender-Call
(module & developer individual)

openKONSEQUENZ Quality Committee Handbook 3/40

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/73906.html

oK-Vision The oK document “Vision/Mission/Roadmap” - it is currently not
available online.

oK-Website The website of openKONSEQUENZ
www.openkonsequenz.de

Architecture
Committee
Handbook

Textural guideline for module developers of openKONSEQUENZ
modules with respect to architectural design & documentation.
https://wiki.eclipse.org/OpenKONSEQUENZACQCRichtlinien

oK-Wiki The openKONSEQUENZ Wiki also contains the ​glossary ​of terms!
http://wiki.openkonsequenz.de/Glossar

openKONSEQUENZ Quality Committee Handbook 4/40

http://wiki.openkonsequenz.de/Glossar

Table of Contents

1. Introduction
1.1 Mission of QC
1.2 Responsibility of QC
1.3 Competence of QC
1.4 Ownership of documents

2. Project/Module Classification and Review
2.1 Project and module Classification

2.1.1 Criticality
2.1.2 Complexity
2.1.3 Quality

2.2 Review method
2.3 Statement of Qualities
2.4 Project Guideline

2.4.1 Project Planning
2.4.2 Project Initialisation
2.4.3 Project Implementation
2.4.4 Project Acceptance

3. Quality Rules and Guidelines
3.1 Code Quality

3.1.1 File System Conventions
3.1.2 Coding Guidelines
3.1.3 Commit Rules
3.1.4 Unit Tests & Code Coverage
3.1.5 Configuration Management
3.1.6 Build, Package & Test
3.1.7 Diagnosis, Exceptions and Errors

3.2 Design Quality
3.2.1 Design Documentation
3.2.2 Verification
3.2.3 Design Reviews
3.2.4 Document List

3.3 Product Quality
3.3.1 Automation in Development
3.3.2 Continuous Integration
3.3.3 Continuous Deployment
3.3.4 Validation
3.3.5 Document List

4. Development Setup
4.1 Environments

openKONSEQUENZ Quality Committee Handbook 5/40

4.1.1 Development Environment
4.1.2 Integration Environment
4.1.3 Quality Assurance Environment

4.2 Development Tools
4.2.1 Build automation
4.2.2 Source code management
4.2.3 Source code conventions and static analysis
4.2.4 Automated code review tracking
4.2.5 Issue tracking
4.2.6 Continuous integration
4.2.7 Source code and test coverage analysis
4.2.8 Software distribution and dependency management

Appendix
A. Statement of Quality
B. Processes

Project Initialisation
Project Procedure
Defining and Documenting the Degree of Fulfilment
Project Implementation
Project Validation
Project Acceptance

C. Project directory layout
D. Coding Guidelines

Common Java artifacts
CIM Versions
CIM Profiles
oK Service Artifacts
oK Core Modules
oK User Modules
oK Source System

openKONSEQUENZ Quality Committee Handbook 6/40

1. Introduction
This document describes the role of the quality committee (QC) in openKONSEQUENZ. It
defines quality criteria for the projects to be developed in the context of
openKONSEQUENZ. While QC acts as a control authority, the Architecture Committee (AC)
creates and maintains the overall software architecture and establishes rules for the
creation, documentation and implementation of architecture in the various projects. The rules
for architecture are described in the oK-AC-Handbook (in the following: AC-Handbook).

1.1 Mission of QC
The mission of the quality committee (QC) is to define, maintain, and enforce the guidelines
for development in the openKONSEQUENZ group.
The QC defines the quality standards for project work (process quality) and project outcome
(product quality). It provides procedure and methods for projects to use and selects tools to
be used (e.g. for documentation).
The QC also defines the integration and QA environment (see chapter III below).
The QC also monitors and evaluates projects and gives feedback to the projects and to the
AC, the project planning committee (PPC), and the steering committee (SC). The QC
supports the other committees in their work.

1.2 Responsibility of QC
The quality of the software code base in openKONSEQUENZ is ultimately the responsibility
of the QC. The AC will focus on the construction of the software and on facilitating the quality
goals; checking and controlling them is the responsibility of the QC. Providing infrastructure
for continuous tracking and reporting of the quality indicators during project work is also
responsibility of the QC. If projects experience difficulties when applying the quality rules and
regulations, it is the QC’s job to support the projects and to help find a viable solution for
their work. Finally, the QC is responsible for analysing project outcome, and giving
technically sound recommendations to the PPC and SC on whether to accept or to decline a
project outcome.

1.3 Competence of QC
The QC may reject a project outcome based on quality analysis. If either the source code
itself, the software running on the QA environment, the documentation, or any other
mandatory project result does not meet the quality requirements, the QC will advise the SC
and the PPC to reject the project’s outcome and to plan re-work. Such a recommendation
must be made in writing and published via the openKONSEQUENZ mailing list. The
recommendation may be challenged by the project, and decision will then be escalated to
the SC.

openKONSEQUENZ Quality Committee Handbook 7/40

Whenever project proposals are prepared, the QC may alter the description of the project
scope to include key quality requirements and the core quality rules, before a public call for
proposals. At minimum, the QC will ensure that this document is part of every official project
proposal. Furthermore, the QC will only alter the PPC’s description of a project if specific
quality aspects are especially important or have a high impact on the project scope.

1.4 Ownership of documents
To define the quality rules and to enforce them, the QC creates, maintains and releases
documents, and defines the development environment. The list of documents are:

● This document “openKONSEQUENZ: Quality Committee Handbook”
● A directory of coding guidelines (currently co-located in this document, see ​Appendix

D​)
● A list of acceptance criteria for project outcomes
● A repository containing standardized test data (to be initialized)

The build infrastructure, its technical specification, and a HOWTO for its usage are also
owned by the QC.

openKONSEQUENZ Quality Committee Handbook 8/40

2. Project/Module Classification and Review
The items described in this chapter should be compiled or prepared by the Project Planning
Committee (PPC) in preparation for a tender. The objectives defined by the PPC with regard
to criticality, complexity and quality will become mandatory components of a tender.

The following sections describe how modules and projects are classified by the Project
Planning Committee (PPC) based on their criticality and complexity and which review
method applies according to the classification. In addition, these goals will be extended to
include additional quality aspects of ISO/IEC 25010 with expected software quality features.

2.1 Project and module Classification
The project and its modules have to be classified using the following rules:

● Complexity on a scale of Small, Medium, Large
● Criticality on a scale of Normal, High, Very High

2.1.1 Criticality
This document classifies criticality as a vector in three dimensions, ​availability​,
confidentiality​, and ​integrity​. The Criticality values are related to the definitions in the
International Standard ISO/IEC 27000. Whenever one dimensions is classified “high”, the
project’s criticality is considered to be “high”, and whenever one dimensions is classified
“very high”, the projects’s criticality is considered to be “very high”. The classification should
be done according to the approach of Determining the protection requirements, described in
the BSI-Standard 100-2.

2.1.2 Complexity
Complexity is related to the size of a module, and can be coupled to typical sizing like story
points or (in this case) Person Days (PD).

2.1.3 Quality
Based on the defined IT protection needs and quality objectives, the project participants will
define mandatory and, above all, testable specifications, similar to the technical Definition of
Done (DoD) to be met for the project. In particular, during the review, we need to check for
and ensure compliance with these specifications. The review criteria listed in Chapter 2.4.4,
based on existing best practices from the oK projects, are helpful for this. The goal of this
initial evaluation of quality criteria for the oK module under consideration is to establish a
harmonised concept of the quality criteria expected of the software for the given oK module.

openKONSEQUENZ Quality Committee Handbook 9/40

2.2 Review method
The overall classification have to be documented in each project proposal. It is required to
determine the review methods as stated in the table below:

Complexity /
Criticality

Small
 (< 120 PD)

Medium
(120 - 240 PD)

Large
(>240 PD)

Normal No manual review
required

Peer Review Peer Review

High Peer Review Peer Review Walkthrough

Very High Peer review Walkthrough Deep inspection

The review methods apply to documentation, code, test specifications, and test protocols.
“No manual review” means automated checks on the code are sufficient. “Peer review”
means an offline check by AC or QC representatives. A representative is nominated by the
committees and is not necessarily a member; e.g. he/she may be another committer or
developer, preferably from another project. “Walkthrough” means an online check by an AC
or QC representative, the author explains the solution. “Deep inspection” means an online
check by an AC member and a QC member; the author and the project lead explain the
solution. The author is responsible for organising the review.

2.3 Statement of Qualities
Each project shall document its quality requirements in the project’s architecture
documentation (according to the AC handbook). Typically, not all quality attributes are
relevant for a project or module. The quality dimensions as defined in ISO 25010 are a frame
of reference. Whenever a quality is of special concern to the project, the impact on the
solution has to be documented. The AC refines system requirements down to project or
module requirements. For example, if a persistence module impacts the overall availability of
the system, the AC breaks down the overall system availability requirements to this module.
The module has to document these requirements, and has to state how they are
implemented, verified and validated.

Even before a tender, mandatory quality criteria as per ISO 25010 need to be evaluated and
documented for each oK module in line with the specification by the PPC (e.g. LeadBuyer,
ProductOwner). ​Appendix A - Project Guidelines provides a set of guidelines for assessing
these quality criteria and are intended to help Project Planning with project specification,
right from the earliest phases. The table included in this appendix serves as a template for
an inspection catalogue which is required for all project participants.

openKONSEQUENZ Quality Committee Handbook 10/40

To evaluate phases 4 and 5, we need to define required scenarios, to be used later on as a
basis for review and approval. A scenario describes a specific situation for the given quality
criterion, the desired behaviour and how this can be measured or tested and ensured.

For each oK module, at least one quality criteria evaluation must be performed, and the
corresponding quality gates defined and saved in the designated project folder. The
essential quality criteria for an oK module should be adjusted in accordance with the
resulting architectural decisions and documented. In addition, the quality criteria for an oK
module should always be defined with due consideration of the quality criteria for the entire
oK platform.

2.4 Project Guideline
The ​project procedures defined in ​Appendix B - Processes serve as a basis and guideline for
the implementation of a project. In order for all project participants to maintain transparent
expectations throughout the project, the following process steps must be implemented in line
with the project procedures coordinated in QC.

2.4.1 Project Planning
The PPC (e.g. LeadBuyer, ProductOwner) will evaluate and, to the extent possible, define
the project evaluation ahead of time, before a tender:

● Determine project type
○ New development or
○ further development

● Define and describe protection needs categories & quality objectives

○ The table in ​Appendix A​ as per ISO 25010 serves as a guideline

The project evaluation will be a required component of a tender. The evaluation of the
specifications established by the PPC (e.g. LeadBuyer, ProductOwner) is especially relevant
for further development projects and should be coordinated in a workshop with all the project
participants.

2.4.2 Project Initialisation
With openKONSEQUENZ, the development project and any review project that might be
required are typically tendered and commissioned independently of each another. This way,
the different project goals resulting from different commissionings cannot be excluded. To
ensure transparent expectations and coordinate required review criteria, an initial project
kick-off as per ​Appendix B - Processes - Project initialisation involving all project partners
should be implemented to establish required, testable project goals.

openKONSEQUENZ Quality Committee Handbook 11/40

As a result of different project preconditions, e.g. new or further development project, as well
as different technologies and rapidly developing innovations, review criteria can only be
harmonised conditionally. The QC manual constitutes a harmonised set of guidelines for
implementing a software project in the context of openKONSEQUENZ, based on the quality
criteria defined in the oK panels.

For new developments, the standards defined in the QC manual are mandatory. If any
project-specific adjustments are beneficial and necessary, the PPC (e.g. LeadBuyer,
ProductOwner) can request a joint project initialisation. The project-specific adjustments will
be coordinated based on the standards and recommendations defined in the QC manual
and documented as requirements in a coordinated oK development process. This might be
the case, for example, if the planned oK module needs to meet high security standards.

For further development projects or donations, a corresponding workshop is obligatory. The
sub-process ​Defining and documenting the degree of fulfilment stipulated in ​Appendix B-
Processes and the sub-process ​Project Coordination serve as guidelines for project
implementation. These specifications are used to define shared acceptance criteria:

● Finalising quality objectives
○ The table in ​Appendix A as per ISO 25010, to be compiled by the PPC (e.g.

LeadBuyer, ProductOwner) as part of the tender, serves as a guideline.

● Defining project goals
○ Defining the TARGET status &, if applicable, ACTUAL status (for further

developments only); for further development projects, a Status Quo must be
determined.

● Establish required review criteria / rules
○ based on Chapter 3
○ Code quality ⇨ establish toolset, rule set, formatter, etc.
○ Design quality ⇨ coordinate / establish necessary architecture deviations from

AC manual, as well as required review criteria
○ Product quality ⇨ establish acceptance criteria with regard to sprint and

commit cycles

All specifications described in this QC manual are considered mandatory for project
implementation and must be coordinated with all project participants and documented as
early as possible if any deviations are required. Deviations from the oK specifications (e.g.
Files System Conventions, Configuration Management,…) must be documented in AsciiDoc
format:

(/documentation/variations.adoc)

openKONSEQUENZ Quality Committee Handbook 12/40

2.4.3 Project Implementation
This process is used to coordinate any necessary changes in the course of the project. The
project implementation sub-process defined in Appendix B - Processes serve as a guideline
for the implementation of the project.

In line with development, at the start of the development project, the reviewer must compare
the current status of the project to the established target criteria, determining and
documenting the current degree of fulfilment. This evaluation is followed by another
coordination meeting between the project participants (see sub-process ​Project
Coordination​). After completion of all designated sprints, evaluation of the degree of
fulfilment and review of the jointly defined acceptance criteria, acceptance procedures can
take place.

Deviations from established specifications and resulting changes within individual sprints
must be made transparent to all project partners and reviewed and approved by the reviewer
as early on as possible. Approval by QC is not required, but, in the case of best practice,
changes should be presented to QC. Deviations from existing oK specifications (e.g. Files
System Conventions, Configuration Management, …) must be documented in AsciiDoc
format:

(/documentation/variations.adoc)

2.4.4 Project Acceptance
The ​Ending ​sub-process defined in ​Appendix B - Processes serves as a guideline for the
completion of the project. This process is used for the publication of all project and review
results as a basis for a subsequent evaluation by QC and, if necessary, updating of best
practices from the completed project.

Acceptance takes place when, for all the acceptance criteria established at the beginning of
the project, there is agreement on the degree of fulfilment, or identified deviations have been
documented and accepted by all project participants.

openKONSEQUENZ Quality Committee Handbook 13/40

3. Quality Rules and Guidelines
The following sections define the quality requirements on development in the
openKONSEQUENZ group.

3.1 Code Quality

3.1.1 File System Conventions
Uniform appearance of the project directory structure and consistent naming of files are
mandatory in collaborative work.

● The standard maven project directory structure have to be used. 1

● The project shall provide AsciiDoc files for all documentation purposes. The files are
enumerated below, see ​Appendix C “Project Directory Layout”​.

If project-specific conditions make it necessary to deviate from the MAVEN standard project
structure, this needs to be made transparent to all project participants and documented as
early on as possible. For additional info, refer to the sections on best practices of the oK
Wiki:

http://wiki.openkonsequenz.de/Hauptseite#File_system_conventions

3.1.2 Coding Guidelines
Uniform appearance of source code, the readability, and the avoidance of error-prone
statements are key to good code quality.

● The coding guidelines have to be adhered to. See ​Appendix D “Coding Guidelines”
below.

● Functions/Methods have to be documented using Javadoc, JSDoc, Doxygen, or
equivalent source code markup systems.

The coding guidelines selected for openKONSEQUENZ will be implemented by rulesets of
software tools (e.g. PMD, Checkstyle, FindBugs). They will then be enforced by the
continuous integration procedure. The ruleset will be made available via the
openKONSEQUENZ wiki or a source code repository.

For all oK projects, standardised coding guidelines are prepared as a rule set for the
software tool SonarQube (​https://www.sonarqube.org​) and can be downloaded from the oK
Wiki (​http://wiki.openkonsequenz.de​). These standardised coding guidelines are required for
all projects and do not need to be individually coordinated for each project.

1 https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

openKONSEQUENZ Quality Committee Handbook 14/40

http://wiki.openkonsequenz.de/Hauptseite#File_system_conventions
https://www.sonarqube.org/
http://wiki.openkonsequenz.de/

In the oK Wiki, best practices are continually being added as experience from oK projects
and as recommendations for new projects, e.g. how coding guidelines can be reviewed
during the development period and in the continuous integration process.

It is also possible to integrate an oK project directly through the SonarQube instances of the
Eclipse Foundation (​https://sonar.eclipse.org/dashboard​) and run a code analysis in
conjunction with the sprint. Only standardised rule sets generated by the Eclipse Foundation
and based on SonarQube can be accessed. Project-specific adjustments or changes to
these standard rule sets are excluded so far.

If the standardised coding guidelines need to be adjusted, e.g. in case of further
development projects, based on the standard rule sets, all the project participants
collaborate at the beginning of the project to coordinate and define test metrics based on
SonarQube standard rule sets that are specific but individually adapted to the technological
requirements of the project. When checking the coding guidelines, refer to the ​Defining and
documenting the degree of fulfilment process described in ​Appendix B​. In addition, rule sets
for each project can be individually expanded or adjusted. The project participants can also
jointly agree on their own rule sets. If adjustments are necessary, a project-related
SonarQube instance must be used. It must be ensured that if multiple rule sets are used,
metrics do not overlap and different weightings are not assigned. For any necessary
adjustments in the course of an ongoing project, the Project Implementation process
described in ​Appendix B​ must be followed.

An oK module always uses a specified version of the rule sets. Deviations in the standard
ruleset stipulated in the oK Wiki should always be versioned according to the project and
documented. Ensure that this ruleset version is used in the continuous integration process.
The source code documentation should be generated and packeted through the build
system. Be sure to also select an appropriate formatter for the ruleset.

Note: The results of the tool assessment allow us to draw conclusions regarding the
serviceability and indicate programme code sections containing indications of errors
from certain error classes. An error can only be identified by manually reviewing
these sections. Aside from assessing serviceability and checking for certain error
classes, the static code analysis does not provide any evaluations of the remaining
quality criteria as per ISO standard 25010. Due to complex safety standards, the
SonarQube safety tests do not take the place of any safety tests. The “quality of the
architecture” is not assessed. Here, too, it is only possible to identify indicators for
weak points in the architecture, e.g. extreme complexity of module dependencies.

openKONSEQUENZ Quality Committee Handbook 15/40

https://sonar.eclipse.org/dashboard

3.1.3 Commit Rules
To guarantee an up-to-date view on the codebase, and to allow all developers to use
functionality as soon as possible, it is important to commit early and often. Functionality that
is presented in a Sprint Review Meeting has to be pushed to the repository before the Sprint
Review Meeting. Smaller sets of functionality (e.g. an interface without implementation, an
abstract class, etc.) should be pushed as soon as they are testable. To guarantee a
continuous flow of development result, a push is required every two weeks (mid-sprint push
& sprint review push).

If, for project-specific reasons, changes must be made to the release cycles or sprint times,
e.g. due to dependencies from projects running in parallel, these must be made transparent
to all project partners as early as possible and must be coordinated and documented no later
than at the project kick-off.

3.1.4 Unit Tests & Code Coverage
Unit testing is a standardized method to assure quality at the source-code level.

● Unit tests have to be written and cover 80% branches.
● At least one unit test case must be written for each use case (or user story).
● Unit tests may use their own individual test data. If possible, they shall use

standardized test data, in order to avoid “wrong” data.
● All unit tests have to be executed in the daily build of the integration environment.
● Coverage metrics have to be reported on a daily basis via the integration

environment.

Based on the existing best practices of openK, it is necessary to achieve a test coverage of
at least 80% (branches), with due consideration of the underlying SonarQube standard rule
set and the associated quality gate. The reviewer must perform a corresponding evaluation
in line with the Project implementation process (see ​Appendix B - Processes​). In individual
cases, project partners can agree to define certain test coverage deviations as proper, but
these must be made transparent, coordinated and documented by Development as early as
possible.

In addition, the code coverage must be determined, since this metric provides information on
the completeness of software tests and the proportion of the test actually performed vs. the
test scope that is theoretically possible. Depending on how we determine the number of
theoretically possible tests, we differentiate between statement coverage, branch coverage,
decision coverage and other degrees of coverage. For additional info, refer to the sections
on best practices in the oK Wiki:

http://wiki.openkonsequenz.de/Hauptseite#Unit_Tests_.26_Code_Coverage

openKONSEQUENZ Quality Committee Handbook 16/40

http://wiki.openkonsequenz.de/Hauptseite#Unit_Tests_.26_Code_Coverage

3.1.5 Configuration Management
The configuration (Versions of different components, of external libraries, of configuration
files) have to be described in the maven POM files.

● All code, configuration files, data, and documents shall reside in
openKONSEQUENZ’ git repositories.

Dependencies among components of the openKONSEQUENZ software and to/from external
software components have to be explicit. This is achieved by maintaining maven pom.xml
files. No local libraries (implicit dependencies) are permitted.
Dependencies on external libraries must be explicitly listed and specified. These must be
stored in a technically processed format (e.g. xml or POM configuration) in the project folder
in the following directory:

/dependencies

The data must include the complete name of the library, including the version. Indicating the
version number is required. The specific versions must be indicated in order to prevent the
version of a software library from being automatically assigned at the time the software
artefact is created. This process should be assisted and harmonised through the use of a
centralised library management system. In addition, dependencies shall be checked with the
OWASP dependency check. The dependency check is a software composition analysis
utility that detects project or library dependencies and searches for known, publicly reported
vulnerabilities. Currently, Java and .NET are supported.

Preference should be given to approved libraries, based on best practices in the oK Wiki
already in place through the IP check of the Eclipse Foundation and recommendations.
Other libraries can be used, provided that this is justified and documented. However, this
requires a justification of why the recommended library cannot be used in the project. No
later than upon project completion, any libraries used which deviate from the
recommendation list must be presented in the quality committee and added to the
recommendation list in line with best practices.

If, based on oK-specific guidelines or experience from the openKONSEQUENZ development
projects, libraries are identified which should not be used in oK modules due to certain
reasons (e.g. safety problems, performance problems, ...), these libraries should be added to
a central blacklist (with version number). The reason must be documented. These libraries
should be integrated by the Quality Committee, similarly to the recommendation list. For
Maven projects, the bill of material pattern (BOM) must be used; also refer to:

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

For Angular UIs, for example, the Maven “frontend-maven-plugin” can be used in order to
produce a technical description of the required Angular tools.

openKONSEQUENZ Quality Committee Handbook 17/40

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

To freeze versions for test and release, the versioning numbers shall conform to the pattern
X.Y.Z.A, where:

● X: Major Release, incremented on major changes like interface definitions or
end-user visible functionality

● Y: Minor Release, incremented on each delivery. Stable versions have even
numbers, developer versions are odd numbers

● Z: developer tag, incremented on each code change
● A: Git-Hash, git-commit reference for easier handling

During development, feature branches have to be used; the name of the feature is added as
part of the version string like this: X.Y.featurename.Z.A

All check-ins need to be commented. The comments have to be plain text and shall contain
the following information:

● Topic (max. 50 characters)
● Task reference (to backlog item, requirement, defect, …; always using the ID of the

task)
● Reason: Why was this change necessary?
● Rationale: What has been done (on an abstract level)?
● Side effects: What else has changed?

3.1.6 Build, Package & Test
Since the software has to be widely accessible, an automatic method of building, packaging
and testing it is required. The maven tool will be used to control these tasks.

● The maven files shall encompass functionality to build the software, create runnable
packages, run the unit-tests, and create all documentation files.

3.1.7 Diagnosis, Exceptions and Errors
Each module shall offer interfaces to access diagnosis information such as operational state,
errors or exceptions. All errors and exceptions have to be logged to a plain text file. The
format of log messages shall comply with the following rules:

● Exactly one line of text for each incident
● Each line shall start with a timestamp, a module designation, a thread ID in a comma

separated line header: “YYYY-MM-DD_HH:SS:ssss, moduleXYZ, TID4711823, …”
● Other information relevant for the module may follow in a comma separated list
● Other information may contain json formatted object information. Json text is in one

line and is correctly enclosed in curly brackets
● If human readable text is part of the log messages, it must be in English.
● Personalized Data and credential information must not be written to log files.

openKONSEQUENZ Quality Committee Handbook 18/40

3.2 Design Quality

3.2.1 Design Documentation
All projects shall document their technical solution concept. The design documentation has
to conform to the architectural guidance specified by the AC-handbook. Technical decisions
have to be explained; their alternatives and consequences of the decision must be
documented. UML description must be used as appropriate, according to the tooling
decision, see Architecture Committee Handbook, Section 2.1.

All libraries used by a project have to be listed in the design document, together with a
rationale for their usage. Libraries that are already cleared are default, they have to be used
unless there are valid reasons against their usage (a list of cleared libraries can be obtained
from the eclipse foundation). If a project chooses to override this default, it needs the
approval of the architecture committee to do so. In that case, the project is responsible for
doing the IP clearing. The clearing has to satisfy the publication license of
openKONSEQUENZ. The clearing of the library has to be done as early and as fast as
possible. If a clearing fails, the library must not be used; all development effort based on
such a library is wasted.

3.2.2 Verification
One of the aspects of verification involves the static analysis of source code and the design
and code reviews. These need to be performed according the review method matrix, see
table “Review Method” above.

The other aspects are tests. Unit tests are required to check basic code functionality, and to
maintain code quality. Design tests check the technical solution against the functional and
qualitative requirements.

● Module test specifications have to be defined for each module. Using black box test
specifications, the test specification specifies how the requirements and quality
attributes are checked.

● Acceptance criteria have to be defined for the module test specification.
● The test data required to run the module tests have to be specified, with respect to

the global data model and the global test data set.
● Mock functionality (​https://en.wikipedia.org/wiki/Mock_object​), required for the

execution of the module test, have to be specified.
● Test specifications, test data, and mock functionality have to be formalized in test

code that can be run automatically. This might not be possible for all test
specifications. Manual test have to specified as a working recipe for a tester.

openKONSEQUENZ Quality Committee Handbook 19/40

https://en.wikipedia.org/wiki/Mock_object

3.2.3 Design Reviews
Design Reviews have to be carried out according criticality and complexity rating and the
resulting review method. Review records have to be stored in the filesystem according to
Chapter V “Project Directory Layout”.

3.2.4 Document List
● Project architecture concept. Contains the mapping to overall architecture and the

break-down into modules. Also, it contains the rationale for technical decisions and
alternatives, the statement on qualities and the criticality/complexity rating. This
document shall conform to the guidelines by the AC.

● How-to information for developers and integrators. Contains information on building,
running, coding, and testing in this project

● Review records. Contains a list of participants, findings, and resolutions
● Test specifications for module integration test. Contains the strategy for integrating

this projects modules, and a concept to test the integration.
● Test protocols. Contain the test setup used and a verdict. If appropriate, execution

logs are also included.
● For each module:

○ Design concept. Contains technical solution concept and coding instructions
○ Review records. Contains a list of participants, findings, and resolutions
○ Test specifications for module test. Contains the concept of testing,

automated and manual parts
○ Test protocols. Contain the test setup used and a verdict. If appropriate,

execution logs are also included.

openKONSEQUENZ Quality Committee Handbook 20/40

3.3 Product Quality

3.3.1 Automation in Development
In the effort to maintain a high overall product quality in an efficient manner, the key is to
have a high degree of automation. Automation refers to the following steps:

● Immediate verification of coding results: This is typically implemented in the IDEs
running automated unit test code and static analysers on the source code. If all tests
at this level are passed, the software gets forwarded to the next stage.

● Continuous integration: All development results are transferred to a dedicated build
and test environment. On a daily basis, the development results are compiled, and
unit tests, integration tests and overall software tests are run automatically. Metrics
and other analysis reports are gathered and provided as feedback to the developers.
If all tests at this level are passed, the software gets forwarded to the next stage.

● Continuous deployment: All development results are transferred to a “QA stage”, a
computing environment as close to the final production environment as possible. The
installation of the software in the QA stage is automated and triggered by successful
integration builds. The software tests are run again, and additional (typically: manual)
test steps are performed.

● Continuous delivery: If the quality assurance on the QA stage has run successfully,
the software is automatically distributed to end-users.

The goal of this automation is to reduce the manual effort of testing as much as possible.
Tests, refactorings and integration of additional functions will all be relatively painless,
because the robust testing environment protects the existing functionality.
openKONSEQUENZ will employ the first three steps, unit testing, continuous integration and
continuous deployment.

3.3.2 Continuous Integration
Projects shall create test specifications which are run during continuous integration. The test
cases shall determine, whether the integrated software’s basic functionality is correct.
The continuous integration environment will calculate metrics, perform static and dynamic
analysis, and will generate a feedback website showing the results of the tests and the
metrics.

3.3.3 Continuous Deployment
After successful run of the continuous integration tests, the software build can automatically
be forwarded to the QA environment. While continuous integration runs at least once per
day, QA testing after deployment runs at least once per sprint.
Projects shall create test specifications for software/system test on the QA stage. This
includes automated integration tests, (automated) UI-Tests, where appropriate and
economically feasible, and descriptions for manual test steps.

openKONSEQUENZ Quality Committee Handbook 21/40

3.3.4 Validation
Validation - the check whether or not the project delivered software like the PPC envisioned,
and like the users require it - is performed on the QA environment. This means, that
representatives from PPC or end users perform the validation. Projects shall create a
validation specification that states, for each use case, the scenarios a end user should
execute in order to validate the system behavior. Minimum required validation is a 3 months
test operation on the QA environment. Additional validation measures have to be
documented in the Validation concept.

Validation will also determine whether or not the project's outcome satisfies all regulations,
e.g. the GUI-styleguide (see also the Architecture Committee Handbook, section 8.4, for
usage of the styleguide document).

3.3.5 Document List
● Project test specification. Contains the strategy for testing the complete project

outcome. This document also contains the description of manual tests. If the mock-up
specifications (see 3., sect. “Verification”) do not cover all aspects needed for
validation purposes, they have to be supplemented here.

● Validation concept. This documents contains a description of all manual tests to be
executed by an end user in order to validate project outcome.

● The project shall deliver a “User documentation” (according to App. A, [3] “BDEW
Whitepaper”, sect. 2.1.2.2)

● The project shall deliver a “Administration documentation” (according to App. A, [3]
“BDEW Whitepaper”, sect. 2.1.2.2)

openKONSEQUENZ Quality Committee Handbook 22/40

4. Development Setup

4.1 Environments

4.1.1 Development Environment
The environment for development is not regulated. It is recommended, that development
environments use syntax checkers and static analyzers (e.g. PMD, Checkstyle, JSLint, …),
but it is neither prescribed nor will it be checked. Development Environments shall use and
run the Unit Test frameworks. Development Environments shall use git and Maven. If it also
includes Jenkins or Hudson, the additional dependency checking tool OWASP Dependency
Check shall be integrated.

4.1.2 Integration Environment
The integration environment uses git and Maven to access the code and to build/test/deploy
the software. It runs gerrit as a tool for reviews, Hudson as a continuous integration platform,
SonarQube for metrics, OWASP Dependency Check for dependency checking, and Nexus
for software distribution. The integration environment also runs the Bugtracker (Bugzilla).

4.1.3 Quality Assurance Environment
The Quality Assurance (QA) environment uses the Nexus of the Integration Environment to
get access the software. It uses Maven to run the automated software tests. Other than this,
the QA Environment is similar to the production environments.

4.2 Development Tools
This section lists a set of development tools approved for use. The actual use of tools in a
project is highly dependent on the technology of the project. Tools can be added in
agreement with the AC.

4.2.1 Build automation
● Maven: ​https://maven.apache.org/

4.2.2 Source code management
● Git: ​https://git-scm.com/

4.2.3 Source code conventions and static analysis
Used for source code checks on development and integration environment.

● PMD: ​https://pmd.github.io/
● Checkstyle: ​http://checkstyle.sourceforge.net/

openKONSEQUENZ Quality Committee Handbook 23/40

https://maven.apache.org/
https://git-scm.com/
https://pmd.github.io/
http://checkstyle.sourceforge.net/

● Findbugs: ​http://findbugs.sourceforge.net/
● JSLint: ​http://www.jslint.com/
● OWASP Dependency Check: ​https://www.owasp.org

4.2.4 Automated code review tracking
● Gerrit: ​https://www.gerritcodereview.com/

4.2.5 Issue tracking
● Bugzilla: ​https://www.bugzilla.org/

4.2.6 Continuous integration
● Hudson: ​http://hudson-ci.org/

4.2.7 Source code and test coverage analysis
● SonarQube: ​http://www.sonarqube.org/

4.2.8 Software distribution and dependency management
● Nexus: ​http://www.sonatype.com/download-oss-sonatype

openKONSEQUENZ Quality Committee Handbook 24/40

http://findbugs.sourceforge.net/
http://www.jslint.com/
https://www.owasp.org/
https://www.gerritcodereview.com/
https://www.bugzilla.org/
http://hudson-ci.org/
http://www.sonarqube.org/
http://www.sonatype.com/download-oss-sonatype

Appendix

A. Statement of Quality
The oK quality criteria are described in the following table:

Quality criterion Subitem Rating ​[1-5]
1 - less important
5 - very important

Scenarios

Functional capability Functional completeness

 Functional accuracy

 Functional adequacy

Performance Time response

 Resource consumption

 Capacity

Usability Appropriateness recognisability

 Learnability

 Controllability

 Fail safety

 Aesthetics of user interface

 Accessibility

Reliability Maturity

 Availability

 Fault tolerance

 Recoverability

openKONSEQUENZ Quality Committee Handbook 25/40

Table: Page 2

Quality criterion Subitem Rating ​[1-5]
1 - less important
5 - very important

Scenarios

Security Confidentiality

 Integrity

 Verifiability

 Responsibility

 Authenticity

Serviceability Modularity

 Reusability

 Analysability

 Modifiability

 Testability

Transferability Adaptability

 Installability

 Interchangeability

openKONSEQUENZ Quality Committee Handbook 26/40

B. Processes

Project Initialisation

Project Procedure

openKONSEQUENZ Quality Committee Handbook 27/40

Defining and Documenting the Degree of Fulfilment

Project Implementation

openKONSEQUENZ Quality Committee Handbook 28/40

Project Validation

Project Acceptance

openKONSEQUENZ Quality Committee Handbook 29/40

The acceptance stage is facilitated by the following review criteria based on existing
empirical data:

Example
Checklist for Acceptance Procedures “Definition of Done”:

Checklist item Result

The code has been completed

Legal header added

Unit tests produced / updated

Code checked in in the eclipse-repository

Quality gate (Sonarqube) passed

Integration tests passed

Regression tests passed

Manual tests passed

Module is installed in the QA environment

IP check set up in Eclipse

Interface documentation updated

Architecture documentation updated

Stipulated acceptance criteria met

openKONSEQUENZ Quality Committee Handbook 30/40

C. Project directory layout
The following directory structure and file name conventions have to be used (*adoc are
asciidoc files). The files mentioned explicitly contain the documentation described in Chapter
II “Quality Rules and Guidelines”. Other files (e.g. code and parameter files) have to be
stored according to the maven standard directory layout.

/configuration/* (config files, esp. A configuration file for QA-environment)

/dependencies/bom.xml

/src/main/doc​/get_started.adoc (how to get started with the project, where to
look, what to do)

/src/main/doc​/arch/architecture.adoc (architecture concept and mapping to overall
architecture)

/src/main/doc​/arch/model/* (UML tool files)
/src/main/doc​/arch/images/*.png (UML diagram exports and other image files)
/src/main/doc​/documentation/user.adoc (user documentation according to 4. Product
Quality)

/src/main/doc​/documentation/admin.adoc (admin documentation according to 4.
Product Quality)

/src/main/doc​/howto/build.adoc (how to build the software)
/src/main/doc​/howto/code.adoc (how to set up for coding)
/src/main/doc​/howto/config.adoc (how to set config parameters, semantics of
parameters)

/src/main/doc​/howto/run.adoc (how to run a demo or the application)
/src/main/doc​/howto/test.adoc (how to set up and execute tests)
/​src/main/doc​/​variations.adoc (Abweichungen zum oK-Standard)
/src/main/​reviews/YYYYMMDD-scope-type-author.adoc (review records)

(e.g. 20160429-ControllerComponent-Peer-ScroogeMcDuck.adoc)

/src/test/doc​/test/integrationtest.adoc (integration test concept for the project)
/src/test/doc​/test/test.adoc (software test concept for the project)
/src/test/doc​/test/validation.adoc (validation concept for the project)
/src/​test/protocols/YYYYMMDD-type-tester.adoc (test execution records)

(e.g. 20160501-Integration-DonaldDuck.adoc)

/dirX (directory for module X)

/dirX/* (follow maven conventions from here)

/dirX/src/​main/doc​/arch/design.adoc (design and mapping to project architecture)
/dirX/src/​main/doc​/arch/model/* (UML tool files)
/dirX/src/​main/doc​/arch/images/* (UML diagram exports and other image files)
/dirX/src/​main/doc​/reviews/YYYYMMDD-scope-type-author.adoc (review records)

(e.g. 20160429-ControllerComponent-Peer-ScroogeMcDuck.adoc)

/dirX/src/test/doc/specs/moduletest.adoc (test concept for the module)

/dirX/src/test/​<technology>​/* (test code, e.g. JUnit code in
/dirX/src/test/java/*)

/dirX/src/test/protocols/YYYYMMDD-scope-type-tester.adoc (test exec records)

(e.g. 20160430-ControllerComponent-Module-DonaldDuck.adoc)

The names of the modules (here: “dirX”) have to be taken from the overall architecture
definitions.

openKONSEQUENZ Quality Committee Handbook 31/40

Example
The following describes a specific structure for a Java project based on the module
org-eclipse-openk-domain-dynamictopology. The structure is described under the directory:

org-eclipse-openk-domain-dynamictopology

/pom.xml
/configuration/qa/dynamic-topology-service.properties

/configuration/qa/dynamic-topology-service.config

/dependencies/bom.xml

/src/main/doc/get_started.adoc

/src/main/doc/arch/architecture.adoc

/src/main/doc/arch/model/*

/src/main/doc/arch/images/*.png

/src/main/doc/documentation/user.adoc

/src/main/doc/documentation/admin.adoc

/src/main/doc/documentation/images/*.png

/src/main/doc/howto/build.adoc

/src/main/doc/howto/code.adoc

/src/main/doc/howto/config.adoc

/src/main/doc/howto/run.adoc

/src/main/doc/howto/test.adoc

/src/main/doc/howto/images/*.png

/src/main/doc/variations.adoc (Abweichungen zum oK-Standard)

/src/main/reviews/20180101-Model-peer-DonaldDuck.adoc

/src/test/doc/test/integrationtest.adoc

/src/test/doc/test/test.adoc

/src/test/doc/test/validation.adoc

/src/test/protocols/20180101-Integration-DonaldDuck.adoc

/service/pom.xml

/service/src/main/doc/arch/design.adoc

/service/src/main/doc/arch/model/*

/service/src/main/doc/arch/images/*.png

/service/src/main/java/org/eclipse/openk/domain/dynamictopology/service/*.java

/service/src/test/doc/specs/moduletest.adoc

/service/src/test/java/org/eclipse/openk/domain/dynamictopology/service/*Test.java

/service/src/test/protocols/20180101-Integration-DonaldDuck.adoc

openKONSEQUENZ Quality Committee Handbook 32/40

D. Coding Guidelines
The overall technology stack of openKonsequenz is not yet defined. The following guidelines
are subject to change. (In the future, they may be put in another document for easier version
control.) The following list of coding guidelines must be adhered to:

Java

● https://google.github.io/styleguide/javaguide.html
● www.securecoding.cert.org/confluence/display/java
● http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html
● https://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html

JavaScript
● https://google.github.io/styleguide/javascriptguide.xml
● http://www.w3schools.com/js/js_conventions.asp

SQL
● http://www.sqlstyle.guide/
● https://google.github

XML
● .io/styleguide/xmlstyle.html

JSON

● https://google.github.io/styleguide/jsoncstyleguide.xml

The following list of metrics have to be calculated during the development:

● Size of code base
● Comment ratio
● Cyclomatic complexity
● Test coverage (line and branch)

Additional pointers to good practice:
● https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP

_Top_10_for_2013
● https://cwe.mitre.org/top25/index.htm

Naming Convention for artifacts
To comply with the eclipse guidelines and to avoid name collisions the following rules should
be considered. They can be used to determine the designators for:

● Java projects
● Java packages
● Java main-classes
● maven-artifacts (groupId, artifactId, name)
● paths (file-system)

For The placeholder “com.company” can be replaced by your company prefix.

openKONSEQUENZ Quality Committee Handbook 33/40

https://google.github.io/styleguide/javaguide.html
http://www.securecoding.cert.org/confluence/display/java
http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html
https://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
https://google.github.io/styleguide/javascriptguide.xml
http://www.w3schools.com/js/js_conventions.asp
http://www.sqlstyle.guide/
https://google.github.io/styleguide/xmlstyle.html
https://google.github.io/styleguide/xmlstyle.html
https://google.github.io/styleguide/xmlstyle.html
https://google.github.io/styleguide/jsoncstyleguide.xml
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://cwe.mitre.org/top25/index.html

Common Java artifacts

 rule examples

prefix {{[com.company |

org.eclipse.openk]}}

● com.company

● org.eclipse.openk

group-id {{prefix}} ● com.company

● org.eclipse.openk

artefact-id common ● com.company.common

● org.eclipse.openk.common

name {{group-id}}.{{artefact-id}} ● com.company.common

● org.eclipse.openk.common

package
(without ‘-’)

{{prefix}}.{{artefact-id}} ● com.company.common

● org.eclipse.openk.common

openKONSEQUENZ Quality Committee Handbook 34/40

CIM Versions

 rule example

prefix {{[com.company|

org.eclipse.openk]}}.cim

● com.company.cim

● org.eclipse.openk.cim

group-id {{prefix}} ● com.company.cim

● org.eclipse.openk.cim

artefact-id cim{{major-version}}v{{minor-v

ersion}}

● cim16v26a

● cim17v07

name {{group-id}}.{{artefact-id}} ● com.company.cim.cim16v26a

● org.eclipse.openk.cim.cim17v0

7

package
(without ‘-’)

{{prefix}}.{{artefact-id}} ● com.company.cim.cim16v26

● org.eclipse.openk.cim.cim17v0

7

openKONSEQUENZ Quality Committee Handbook 35/40

CIM Profiles

 rule example

prefix {{[com.company |

org.eclipse.openk]}}.cim.prof

ile

● com.company.cim.profile

● org.eclipse.openk.cim.profile

group-id {{prefix}} ● com.company.cim.profile

● org.eclipse.openk.cim.profile

artefact-id {{profile}} ● entso-e

● openkonsequenz

name {{group-id}}.{{artefact-id}} ● com.company.cim.profile.entso-

e

● org.eclipse.openk.cim.profile.

openkonsequenz

path {{name}} ● com.company.cim.profile.entso-

e

● org.eclipse.openk.cim.profile.

openkonsequenz

package
(without ‘-’)

{{prefix}}.{{artefact-id}} ● com.company.cim.profile.entsoe

● org.eclipse.openk.cim.profile.

openkonsequenz

openKONSEQUENZ Quality Committee Handbook 36/40

oK Service Artifacts

 rule example

prefix {{[com.company |

org.eclipse]}}.openk

● com.company.openk

● org.eclipse.openk

module group ({{owner}} != "oK") ?

{{owner}}-service :

service

● company-service

● service

component level [common | core | model

| logic | adapter |

infrastructure |

service]

● adapter

group-id {{prefix}}.{{module

group}}

● com.company.openk.company-ser

vice

● org.eclipse.openk.service

artefact-id {{module

group}}-{{component

level}}

● company-service-model

● service-model

name {{group-id}}.{{artefact

-id}}

● com.company.openk.company-ser

vice.company-service-model

● org.eclipse.openk.service.ser

vice-model

path {{group-id}}/{{componen

t level}}

● com.company.openk.btc-service

/model

● org.eclipse.openk.service/mod

el

package (without
‘-’)

{{group-id}}.{{componen

t level}}

● com.company.openk.companyserv

ice.model

● org.eclipse.openk.service.mod

el

app-main-class
(CamelCase)

{{owner}}Service ● CompanyService

● Service

openKONSEQUENZ Quality Committee Handbook 37/40

oK Core Modules

 rule example

prefix {{[com.company |

org.eclipse]}}.openk.co

re

● com.company.openk.core

● org.eclipse.openk.core

module group ({{owner}} != "oK") ?

{{owner}}-{{module-name

}} : {{core-module}}

● company-module-name

● module-name

component level [common | core | model

| logic | adapter |

infrastructure |

service]

● adapter

group-id {{prefix}}.{{module

group}}

● com.company.openk.core.compan

y.module-name

● org.eclipse.openk.core.module

-name

artefact-id {{module

group}}-{{component

level}}

● company-module-name-service

● module-name-service

name {{group-id}}.{{artefact

-id}}

● com.company.openk.core.compan

y-module-name.company-module-

name-service

● org.eclipse.openk.core.module

-name.module-name-service

path {{group-id}}/{{componen

t level}}

● com.company.openk.core.compan

y-module-name/service

package (without
‘-’)

{{group-id}}.{{componen

t level}}

● com.company.openk.core.module

name.service

● org.eclipse.openk.core.module

name.service

app-main-class
(CamelCase)

{{module group}}Service ● CompanyModuleNameService

● ModuleNameService

openKONSEQUENZ Quality Committee Handbook 38/40

oK User Modules

 rule example

prefix {{[com.company |

org.eclipse]}}.openk.ap

p

● com.company.openk.app

● org.eclipse.openk.app

module group ({{owner}} != "oK") ?

{{owner}}-{{app-name}}

: {{app-name}}

● company-app-name

● app-name

component level [common | core | model

| logic | adapter |

infrastructure |

service]

● adapter

group-id {{prefix}}.{{module

group}}

● com.company.openk.app.company

-app-name

● org.eclipse.openk.app.app-nam

e

artefact-id {{module

group}}-{{component

level}}

● company-app-name-adapter

● app-name-adapter

name {{group-id}}.{{artefact

-id}}

● com.company.openk.app.company

-app-name.company-app-name

● org.eclipse.openk.app.app-nam

e

path {{group-id}}/{{componen

t level}}

● com.company.openk.app.company

-app-name/adapter

● org.eclipse.openk.app.app-nam

e/adapter

package (without
‘-’)

{{group-id}}.{{componen

t level}}

● com.company.openk.app.company

appname.adapter

● org.eclipse.openk.app.appname

.adapter

app-main-class
(CamelCase)

{{module group}}Service ● CompanyAppNameService

● AppNameService

openKONSEQUENZ Quality Committee Handbook 39/40

oK Source System

 rule example

prefix {{[com.company |

org.eclipse]}}.openk.so

urce-system

● com.company.openk.source-syst

em

● org.eclipse.openk.source-syst

em

module group ({{customer-name}} !=

"oK") ?

{{customer-name}}-{{sou

rce-system-name}} :

{{source-system-name}}

● customer-name-topology

● mock-up-topology

component level [common | core | model

| logic | adapter |

infrastructure |

service]

● adapter

group-id {{prefix}}.{{module

group}}

● com.company.openk.source-syst

em.customer-name-topology

● org.eclispe.openk.source-syst

em.mock-up-topology

artefact-id {{module

group}}-{{component

level}}

● customer-name-topology-adapte

r

● mock-up-topology-adapter

name {{group-id}}.{{artefact

-id}}

● com.company.openk.source-syst

em.customer-name-topology.cus

tomer-name-topology-adapter

● org.eclispe.openk.source-syst

em.mock-up-topoloy-adapter

path {{group-id}}/{{artefact

-id}}

● com.company.openk.source-syst

em.customer-name-topology/

adapter

● org.eclipse.openk.source-syst

em.mock-up-topology/ adapter

package (without
‘-’)

{{group-id}}.{{componen

t level}}

● com.company.openk.sourcesyste

m.customernametopology.adapte

r

● org.eclispe.openk.sourcesyste

m.mockuptopology.adapter

app-main-class(Ca
melCase)

{{module group}}Service ● CustomerNameTopologyService

● MockUpTopologyService

openKONSEQUENZ Quality Committee Handbook 40/40

