
Architecture Committee Handbook

openKONSEQUENZ

created by

Architecture Committee

We acknowledge that this document uses material from the arc 42 architecture template,

http://www.arc42.de. Created by Dr. Peter Hruschka & Dr. Gernot Starke.

Template Revision: 6.1 EN

June 2012

1

http://www.arc42.de
http://www.arc42.de

Revision History

Version Date Reviser Description Status

1.0 2016-07-04 A. Göring Alignment in AC/QC conference call Released

1.0.1 2016-07-19 A. Göring Added UML-Tool decision in chapter 2.

Constraints, Added software-tiers

image in chapter 8.

Draft for

v1.1

1.1 2016-08-18 A.Göring Alignment in AC/QC conference call Released

1.1.1 2016-08-26 F. Korb, M.

Rohr

Description of architecture layer model

and its APIs. Example internal module

architecture (Presented in

ACQC-Meeting 15.& 29.08.2016)

Draft for

v1.2

1.2 2016-09-14 A. Göring Integration of Concept for Plattform

Module Developmennt, Consolidation

v1.1.1

Released

1.2.1 2016-09-16 S.Grüttner Reorganization of Chapter7

Deployment Environment, clearifying

the reference environment as “image”.

Adding cutting of CIM Cache.

Modified Logging (8.17) for use of

SLF4J.

Added potential non-functional

requirement for Offline-Mode.

Draft for

v1.3

1.2.2 2017-01-30 A. Göring Adding Link to oK-API Swagger

Definition, deleting old Interfaces

Annex. Adding CIM Cache Module

dependencies image and text (from

Felix Korb)

Draft for

v1.3

1.3 2017-02-14 A. Göring Alignment in/after AC/QC conference

call

Released

1.3.1 2017-09-05 A. Göring Minimum requirement change from

Java EE 7 to Oracle Java SE 8. Added

reporting tool decision as discussed in

AC/QC conference call 2017-08-28

Released

1.4.0 2018-01-19 A. Göring Marked deprecated technology; Added Released

openKONSEQUENZ Architecture Committee Handbook 2/73

Glossary for environments, modules,

platform; moved module architecture

documentation tasks to Appendix I

1.5 2018-11-26 A. Göring Added

Publish-Subscribe-Mechanism-Decision

, Blacklist with Camunda (pre 7.11) and

JSON.org due to IP-Check conflicts at

Eclipse, Reminder to Eclipse IP-Check

fulfillment in libraries section, Added

IP-Check Guideline Reference.

Released

1.5.1. 2019-02-28

up until

release

A. Göring Added Mailhog for QA and demo env.

Added user modules eclipse project,

Added cim XML and RDF serialization

standards. Added Design Decision for

Client Side Package Manager NPM.

Draft

1.6. 2019-07-10 A. Göring Created release version - added parts

were aligned with AC around editing

dates.

Released

1.6.1 2019-12-02

up until

release

A. Göring Added Dependency-Check Plugin for

Jenkins, Added Camunda-bpm-platform

subpackages that passed the IP Check.

Draft

1.6.2 2020-03-09

up until

release

S. Hanna Added BSI

IT-Grundschutz-Kompendium as a

Security Architecture Constraint

Draft

1.7.0 2020-10-19 A. Göring Added Oracle DB as additional

database to be supported.

Draft

1.7.1 2022-01-24 A. Göring Added Log4J 2.17.1 as minimal Version

Number for new/updated modules

Released

Formal
According to a decision of the Quality Committee, this document is written in english.

Document control:

Author: Andre Göring, andre.goering@offis.de (assistant of architecture committee)

Reviewed by: SC, PPC, and QC of openKONSEQUENZ

Released by: AC

openKONSEQUENZ Architecture Committee Handbook 3/73

mailto:andre.goering@offis.de

This document is licensed under the Eclipse Public License Version 1.0 ("EPL")

Released versions will be made available via the openKONSEQUENZ web site.

Open Issues for Architecture Committee Handbook
This is a living document. Further general architectural topics have to be detailed by the

Architecture Committee and can not yet be answered without further knowledge from

further openKONSEQUENZ projects. Known issues are listed red coloured.

Module specific Architecture Documentation Hints

GREEN & Boxed: Open architecture documentation issues for module developers in

module specific arc42-document (see Appendix I) or global oK-CIM-Profile (see Appendix

I) or tender.

openKONSEQUENZ Architecture Committee Handbook 4/73

Related documents

Document Description

BDEW Whitepaper Whitepaper on requirements for secure control and

telecommunication systems by the german BDEW Bundesverband der

Energie und Wasserwirtschaft e.V.

(https://www.bdew.de/internet.nsf/id/232E01B4E0C52139C1257A5D

00429968/$file/OE-BDEW-Whitepaper_Secure_Systems%20V1.1%20

2015.pdf)

BSI

IT-Grundschutz-Ko

mpendium

Comprehensive compendium on information security and

recommendations by the german "Bundesamt für Sicherheit in der

Informationstechnik" (BSI)

(https://www.bsi.bund.de/DE/Themen/ITGrundschutz/ITGrundschutz

Kompendium/itgrundschutzKompendium_node.html)

BSI TR-02102 Technical Guideline according to encryption recommendations and

key length by the german BSI - Bundesamt für Sicherheit in der

Informationstechnik

(https://www.bsi.bund.de/DE/Publikationen/TechnischeRichtlinien/tr

02102/index_htm.html)

CIM Cache oK Domain Module for management and provision of CIM related

data (i.e. topology, assets, measurements)

Source:

https://projects.eclipse.org/projects/technology.openk-platform

Documentation:

https://wiki.openkonsequenz.de

Eclipse

Development

Platform

Platform for development of oK Modules.

Platform-Modules (Domain and Core Modules) Resources:

https://projects.eclipse.org/projects/technology.openk-platform

User-Modules Resources:

https://projects.eclipse.org/projects/technology.openk-usermodules

eLogbook oK-User-Module: A digital Logbook for Network Operators

Source & Documentation:

https://projects.eclipse.org/projects/technology.elogbook

Introduction to

Eclipse IP Check

Guideline for module developers of openKONSEQUENZ modules

according to the IP Check of Eclipse to ensure compatibility of the

modules to the Eclipse License.

(https://www.openkonsequenz.de/das-konsortium/23-committee/7-

openKONSEQUENZ Architecture Committee Handbook 5/73

https://projects.eclipse.org/projects/technology.openk-platform
https://wiki.openkonsequenz.de
https://projects.eclipse.org/projects/technology.openk-platform
https://projects.eclipse.org/projects/technology.openk-usermodules
https://projects.eclipse.org/projects/technology.elogbook

quality-committee)

oK-API The APIs to connect modules to each other as well as source systems

such as DMS, GIS, ERP to platform components are defined with

Swagger (http://wiki.openkonsequenz.de/Source_System_API)

oK-Charter The openKONSEQUENZ charter

(https://wiki.eclipse.org/images/f/f5/20150623a_openKonsequenz_V

14-3_%283%29.pdf)

oK-GUI-Styleguide Style guide for module developers of openKONSEQUENZ modules

according to the graphical user interface.

(http://wiki.openkonsequenz.de)

oK-Module-Tender-

Call

The openKONSEQUENZ project planning committee prepares a

document which describes the requirements to the development for

each module. With this document it calls for tenders at software

developers

(module individual)

oK-Module-Tender The software developers answer to the oK-Module-Tender-Call

(module & developer individual)

oK-Vision The oK document “Vision/Mission/Roadmap” - it is currently not

available online.

oK-Website The website of openKONSEQUENZ

(www.openkonsequenz.de)

Quality Committee

Handbook

Textural guideline for module developers of openKONSEQUENZ

modules according to quality related issues.

(https://www.openkonsequenz.de/das-konsortium/23-committee/7-

quality-committee)

openKONSEQUENZ Architecture Committee Handbook 6/73

http://wiki.openkonsequenz.de/Source_System_API

Table of Contents

1. Introduction and Goals

1.1 Requirements Overview

Functional Requirements:

Non-functional Requirements:

1.2 Quality Goals

Reference Platform and Platform Modules

User Modules:

1.3 Stakeholders

DSOs

AC

QC

Module Developer

System-Integrator

2. Architecture Constraints

2.1 Technical Constraints

2.2 Organizational Constraints

2.3 Conventions

3. System Scope and Context

�3.1 Business Context

3.2 Technical Context

3.3 External Interfaces

Current overall oK interface profile

Short interface description for each oK-ESB-interface

4. Solution Strategy

4.1 oK Multilayer Architecture

4.2 Platform Modules

4.3 Platform API

4.4 Source Systems

4.5 Source System-Abstraction

4.6 Source System API

4.7 Domain Modules

Topology management

4.8 Domain Module API

4.9 Core Modules

4.10 Core Modules API

4.11 User Modules

5. Building Block View

openKONSEQUENZ Architecture Committee Handbook 7/73

5.1 Level 1

Core API

Table of Core Modules

Domain API

The Domain Modules known as “CIM Cache”

5.2 Level 2

6. Runtime View

7. Deployment View

8. Concepts and Non-Functional Requirements

8.1 Domain Models

8.2 Recurring or Generic Structures and Patterns

Internal module architecture

8.3 Persistency

8.4 User Interface

8.5 Ergonomics

8.6 Flow of Control

8.7 Transaction Procession

8.8 Session Handling - DEPRECATED - check eLogbook

8.9 Security

General Requirements and Housekeeping

8.10 Safety

8.11 Communications and Integration

8.12 Distribution

8.13 Plausibility and Validity Checks

8.14 Exception/Error Handling

8.15 System Management & Administration

8.16 Logging, Tracing

8.17 Business Rules

8.18 Configurability

8.19 Parallelization and Threading

8.20 Internationalization

8.21 Migration

8.22 Testability

8.23 Scaling, Clustering

8.24 High Availability

8.25 Code Generation

8.26 Build-Management

8.27 Offline-Module

openKONSEQUENZ Architecture Committee Handbook 8/73

9. Design Decisions

9.1 Design Decision List

9.2 Black List

10. Quality Scenarios

11. Technical Risks

12. Glossary

Appendix I: Module Developer Tasks according to Architecture Documentation

openKONSEQUENZ Architecture Committee Handbook 9/73

1. Introduction and Goals

The consortium openKONSEQUENZ (oK) consists of Distribution System Operators (DSO),

their software manufacturers, integration service providers and academic institutes. It

targets to overcome vendor lock-in in the hierarchical grown IT-infrastructure of DSOs. The

openKONSEQUENZ® Working group (openKONSEQUENZ® WG) wants to foster and support

an open and innovative eco-system providing tools and systems, qualification kits and

adapters for standardized and vendor independent e-Systems. Therefore openKONSEQUENZ

defines a reference platform, where different modules for different purposes shall be

implemented for and interact with existing parts of the IT landscape and other modules

under development.

This handbook describes the architectural view on openKONSEQUENZ software, its current

overall system and software architecture which developers shall develop in respect to and

what software architecture artifacts (documentation & graphs) developers have to

document during development. In especially the “green colored TODOs” mark important

documentation that module developers must create (see Appendix I).

These artifacts have to be stored in Arc42 - architecture documentation for each module in

the module specific git-repository (see Quality Committee (QC) handbook for naming and

directory conventions). The architecture guidelines are generally applicable. These

guidelines can be adapted over time based on specific need and/or request from

Architecture Committee (AC) members or third party application developers. A change

management process will be set up for this in the future.

1.1 Requirements Overview

The openKONSEQUENZ is an umbrella for a rising number of projects with common intends:

Functional Requirements:

● Provide a common interoperable platform, which can unite the data of different

existing systems and offers a streamlined environment for extending these existing

systems by new User Modules. The oK uses open interfaces and reduces or optimizes

interfaces where applicable.

○ What happens: different systems share data along the platform.

○ Why:

■ Islands in IT landscape shall be connected in an easy way

■ To overcome vendor dependent interface development and vendor

lock-in.

● Get software support for new and demanding requirements in context of the energy

policy turnaround.

○ What happens: New modules realize functions on existing information

○ Why: New functions required to easily solve problems / processes.

openKONSEQUENZ Architecture Committee Handbook 10/73

Non-functional Requirements:

● Requirements for modules according to confidentiality, availability and integrity are

defined in levels normal, high and very high (normal is descripted in BDEW

Whitepaper). The oK reference platform has to be designed for meeting specification

for levels high to very high.

● Detailed and hard requirements for the oK reference platform shall be listed in

Section 10 Quality Scenarios.

Different modules may not only underlie different functional requirements, but also

different non-functional requirements. These are specificated in the tenders for each

module. So the entirety of requirements for modules comes from tender documents, the AC

and QC handbooks, SCRUM product backlog and SCRUM sprint backlog.

1.2 Quality Goals

Overall Quality Goals of openKONSEQUENZ are detailed in the openKONSEQUENZ Charter

and listed in short:

● process and data integrity with standardized interfaces,

● long term maintainability for components to be usable longer than 15 years,

● compliance with frequently changing regulation,

● vendor-neutrality,

● availability as needed,

● security for critical infrastructure by design,

● innovations in products and development.

There is a need to make a difference between openKONSEQUENZ User Modules, Platform

Modules (Domain Modules and Core Modules) and a reference platform itself to qualify

goals. The reference platform is a standardized host for new modules. Platform Modules are

modules that are to be used in several projects for supply of data or services. User Modules

are that applications, a user from a DSO uses for solving their use case. (For detailed

descriptions see chapter “Solution Strategy”.) For each part, the Quality Goals have to be

discussed individually. Please check also Quality Committee Handbook for quality related

requirements.

Reference Platform and Platform Modules

● Flexibility - The reference platform shall allow, that different systems and modules

from different vendors/developers can interact and interoperate, and may be

exchanged or recombined.

● Availability - All Platform Modules that are running on the platform can only be as

available as the platform - same for User Modules that are based on Platform

Modules.

openKONSEQUENZ Architecture Committee Handbook 11/73

● Maintainability (and testability as part of maintainability) - platform and its Platform

Modules shall be used longer than 15 years.

● Integration performance - new implemented functionality of oK own modules and

external modules shall be included fast / automatically.

● Security - the platform and its modules need to underly security-by-design

User Modules:

● Functionality - User Modules must fulfil their functional requirements

● Integration performance - User Modules must be easy integratable in different

production environments.

● Modifiability (and testability as part of modifiability) - Good documentation (i.e. code

and architecture documentation) makes code changes easier and automatic tests

facilitate rigorous verification.

● Ergonomics - according to oK-GUI-Styleguide.

1.3 Stakeholders

DSOs

Need software fulfilling their functional and non-functional requirements.

AC

Manages openKONSEQUENZ Architecture demands and is responsible for this document.

QC

Manages openKONSEQUENZ Quality demands and is responsible for the related Quality

Committee Handbook.

Module Developer

Is the software developer who develops a module (or the tender for the module). He has to

take the QC handbook and this AC handbook into account, when offering a tender and when

developing a module.

System-Integrator

Needs information for integration of modules in a specific DSO environment.

openKONSEQUENZ Architecture Committee Handbook 12/73

2. Architecture Constraints

In the following section, architecture constraints are listed. This are any requirement that

limit software architects in their freedom of design decisions or the development process:

● License: Open Source-Licence “Eclipse Public License 1.0” with its demands on

Intellectual Property (IP) for the usage of libraries.

● Commissioning/Hiring/Business: In the consortium, one or more of the DSOs is/are

the driving force for a module. In procurement the Lead Buyer (N-ERGIE AG) is the

contactpoint for business questions. In contrast to this the driving DSO is handling

functional/technical questions and is responsible for commissioning.

● Development using SCRUM.

○ Product Owner comes from the specific module driving oK DSO

○ SCRUM Master from the module developing company.

● Quality Control and Acceptance: Sprints + 3 month test operation + See QC

handbook.

● Standardization: Usage of standardized data structures (CIM) and the reference

platform.

● Security: Unless explicitly described otherwise in this document or the QC Manual,

the security requirements specified in the BSI IT-Grundschutz-Kompendium apply.

An additional architecture constraint is defined in the chapter “Solution Strategy”, which

describes the oK Multilayer Architecture.

2.1 Technical Constraints

Technical frameworks or requirements constraining the developing of modules are largely

based on the experience made with the initial pilot application implementation. These are

defined to allow interoperability between the various modules to come and the oK reference

platform and for oK reference platform enhancements.

When an application developer would like to use different components than those listed

below, he has to get approval from the Architecture Committee.

Software platform framework and requirements

Basis

components

of the

reference

platform

Portal Liferay;

Application Server Tomcat;

JPA EclipseLink;

Database PostgreSQL, Oracle DB;

ESB Talend (open studio for ESB)

Portal, App Srv, ESB are DEPRECATED as

going for microservices.

Portal is test portal / entry point as in

eLogbook (take a look there)

openKONSEQUENZ Architecture Committee Handbook 13/73

PostgreSQL will be the relational

database on reference/demo

environment but shall be abstracted by

EclipseLink. Besides PostgreSQL also

Oracle DB must be supported.

Runtime

engine

openJDK and openJ9 in the “current” LTS-Versions at the beginning of each

module development.

https://adoptopenjdk.net/index.html

https://adoptopenjdk.net/support.html

(Java Oracle 8 SE was removed on 2018-11-26 because of licence costs

from 2019 on)

Interfaces openKONSEQUENZ-CIM-Profiles for APIs based on CIM 17 or later via CIM

RDF/XML for topologies or deep nested structures and XML for others via

RESTful Webservices & Swagger

GUI See oK-GUI-Styleguide

Programmin

g Language

GUI

AngularJS, Bootstrap, jQuery,

REST/JSON Interfaces

DEPRECATED as going for microservice

(at least AngularJS can be updated to

newer Versions of Angular)

Please take a look at best practise

stack for CIM Cache or eLogbook (see

Links in references)

Interfaces to Domain Modules shall

use REST with XML or RDF/XML (see

oK-API reference)

GUI -

Browser

Firefox or Chromium based

Browsers for desktop

applications.

Libraries,

Frameworks,

Components

Used Libraries/Frameworks have

to be compatible to be used in

an Eclipse Public License project.

Libraries have to get the IP

approval from the Eclipse

Foundation. IP Checks are

strongly recommended right in

openKONSEQUENZ Architecture Committee Handbook 14/73

https://adoptopenjdk.net/index.html
https://adoptopenjdk.net/support.html

the beginning of each module

development or even before in

tender phase. Usable Libraries,

that passed the Eclipse IP Check

are listed in the maven POM files

of the oK Projects. A Howto

according to IP-Checks is

available on the oK-Website

Maven, used for libraries

packaging, for quality check and

Continuous

Build/Deployment/Integration

see QC Handbook

Programming Constraints

See QC Handbook

UML-Tooling For CIM related modeling, the

use of the tool Sparx “Enterprise

Architect” (EA) is strongly

encouraged. If other tools are

used, a data transfer

(export/import) to EA must be

frictionless, i.e. model structure,

contents, and diagrams have to

be transferred to a EA model

(possible). For software

architecture related modeling,

an open source UML tool shall

be used. Up until further notice,

this tool is “Modelio”.

This framework and set of products describes the openKonsequenz reference system

components. Instantiations on grid operator site may get adapted on request by the grid

operator or on recommendation of the system integrator to cope with specific grid operator

requirements regarding i.e. integration with existing ESB, BPM or application server

technology.

openKONSEQUENZ Architecture Committee Handbook 15/73

2.2 Organizational Constraints

For architecture constraints responsible persons/groups are listed below.

Organization and Structure

Steering Committee

(SC)

Has the final say in every oK question.

Project Planning

Committee (PPC)

Plans following projects and specifies requirements for each

individual module. Calls for tenders based on their

requirements, the AC handbook, QC handbook and

oK-GUI-Styleguide.

Architecture

Committee (AC)

Gives Framework and Constraints for architecture according to

technology, interfaces, reference environments, architectural

concepts, design decision and documentation. Every

difference from their architecture guidelines in module

development has to be approved and agreed by the AC. The

AC may in case of deviation advise the Product Owner to

refuse or accept a sprint acceptance or product acceptance in

architectural questions.

Quality Committee

(QC)

Gives Framework and Constraints for quality of the software,

like code quality & styleguides, testing, build. These quality

aspects also mirror back to architecture questions (and vice

versa).

Product Owner (PO) Gives and prioritizes requirements and acceptance criteria in

Product Backlog for Sprint Planning / Backlog and checks their

fulfilment in sprint reviews and may by this limit architectures

solution space of a module. The PO may refuse a sprint or

product acceptance cause of non-fulfilment of architecture

requirements.

SCRUM Master (SM) Is responsible for the success of the SCRUM. SM checks for

Compliance with the SCRUM Process and ensures as well the

communication between module developers and PO. SM

helps PO at maintaining the Product Backlog and the

developer at the definition of done.

The modules are developed in Eclipse Projects. For User modules as well as platform

(domain and core) modules there are two existing projects (see Eclipse Development

Platform) where modules shall be developed (further). The committer rules of eclipse are

openKONSEQUENZ Architecture Committee Handbook 16/73

strict. Committer can not easily be added. oK Core Developer (that need to be established)

are Committer. For new modules, new git repositories need to be applied at the eclipse by

the developer in the respective eclipse project. 2.3 Conventions

● Architecture related module specific documentation has to be documented in the

module specific git repository (see QC Handbook for directory & type advises)

according to the Arc42 template. Documentation language is english. In especially

the APPENDIX I marks important documents/arc42-parts, that have to be created by

module developers. Use UML for graphs! (For Tooling see chapter 2.1).

● See “QC Handbook” (for coding styleguides, quality reports, naming conventions,

version and configuration management...)

openKONSEQUENZ Architecture Committee Handbook 17/73

3. System Scope and Context

The openKONSEQUENZ develops modules for the operation of distribution grids according to

current IT technologies and regulation. These modules extend the functionality of SCADA,

often coupled with other business systems of a DSO. The openKONSEQUENZ hosts User

Modules and Platform Modules. The User Modules offer extended functionality, that the

current solutions do not provide (either in functionality or in quality). The Platform Modules

(Core Modules and Domain Modules) provide domain-independent and energy domain-

applied services, that are needed for a variety of User Modules, external modules or even

the current existing IT systems. Therefore the modules communicate with each other and

with the existing IT infrastructure via interfaces to gather and distribute the necessary data

for operation.

● Main focus is the communication between different modules on business logic tier to

ensure communication between different systems in different settings from different

DSOs.

● As transport medium, the Enterprise Service Bus is required to handle all

communication between User Modules and Platform Modules as well as to existing

business systems.

● No direct communication between modules and especially no communication via

direct access to the same database schemes shall exist.

● Also the tier-wise communication between graphical user interface and business

logic is in focus of openKONSEQUENZ.

�3.1 Business Context

In openKONSEQUENZ additional modules for distribution network operation are developed,

that are usually located outside of a SCADA system. A long term view is shown in the

following picture according to the Smart Grid Architecture Model plane. A use of

openKONSEQUENZ modules is also imaginable in the TSO domain, the components shown in

the figure then move one column to the left. Module developers have to have in mind, that

DSOs often separate the operation zone into common operation and SCADA.

openKONSEQUENZ Architecture Committee Handbook 18/73

Neighbouring systems of modules are

● existing DSO systems

○ SCADA,

○ GIS,

○ ERP,

○ CRM,

○ Weather forecasts

○ …
● Other Platform Modules

○ Topology Management(pilot)

○ Archive (planned)

○ Identity & Access Management (planned)

○ ...

● Other User Modules

○ Eisman (feed-in management; pilot)

○ Operation Diary (planned)

○ Switch Request Management (planned)

○ ...

openKONSEQUENZ Architecture Committee Handbook 19/73

3.2 Technical Context

The typical system landscape of DSOs is characterized by heterogeneous data models in

closed legacy systems with proprietary interfaces. Because of this, there are high integration

barriers and -costs that slow down grid operators and software suppliers (redundant data

management, inconsistencies, adapter dev.,...). The oK approach is to drive open

interfaces/data models based on CIM standard with standardized semantics and less

misunderstandings and proprietary knowledge.

According to the following figure, there is to differ between inner module communication

between the business layer and the UI layer (called REST in the figure) of a module and

module external communication or inter-module communication (called CIM in figure).

For the module external communication (called CIM in figure) interfaces to all systems of

DSOs have to be taken into account under following aspects:

● As a basis, the Common Information Model - CIM (in current development Version 17

or newer) is/has to be used for definition of interfaces. It provides an ontology for

equipment in the electrical domain, giving semantics and syntax of attributes,

associations and classes in an object oriented way.

● This includes the use of serialization format RDF (CIM/XML) for topology or deep

nested structures and XML for all others as well as the use of CIM-envelopes (See IEC

61968-100).

For serialization as CIM-XML-RDF the IEC 61970-501 and 61970-552 has to be taken

into account.

For XML serialization (even JSON should have the same structure) the IEC 62361-100

has to be taken into account. So associations names name the XML-Tag of an object -

no additional class tag. To differ between classes that inherit from the associations

target class, the associations name is skipped and the objects are tagged by their

own, specialized class name (please refer to IEC 62361-100 and check CIM-Tooling

results).

The CIM-Tool for profiling has shown best results (at least for XSD generation - over

Modsarus (only semi automatically in generalization patterns), CIMea (no

generalization), EA13 SchemaComposer (no generalization),

CIMContextor&CIMSyntaxGen (no stable version)).

● If a module is not using this serialization format, it has to be reasonably explained

and documented and needs an authorization of the ACQC.

● As interface-technology RESTful web services are used.

● For each external interface (interfaces between modules or external systems) the

interface has to be documented in this document.

● Interfaces have to be designed under the interface segregation principle.

● For checking out interoperability of interfaces, the existing overall openKONSEQUENZ

interface schema must be extended by the module developer - this shall ensure

openKONSEQUENZ Architecture Committee Handbook 20/73

reutilization of existing parts of the schema and avoid inconsistencies in

semantics/syntax.

● Dependencies of modules to services realized by other modules have to be specified

and documented explicitly.

● When CIM is not appropriate (like access management), other standards in their

respective domain shall be taken into account first to avoid proprietary and

inaccurate interfaces. The interface has also be documented in the overall

openKONSEQUENZ interface profile and it should use REST & XML - otherwise

reasonably explained and documented exceptions have to be approved by ACQC.

● In the future a development of shared DSO CIM profiles comparable to entso-e

profiles is planned: The particular models of a certain grid relating messages or files

are conform to the overall oK-DSO-CIM-profile specification, which itself shall be

conform to the official (future) CIM standard.

For inner module communication (called REST in the figure) RESTful Webservices shall be

used with json serialization, which fits well for the JS-GUI Tier. This is common to User

Modules and Platform Modules. If the latter does not need an UI, the REST called interface

(in the figure) and UI can be left away.

openKONSEQUENZ Architecture Committee Handbook 21/73

3.3 External Interfaces

Current overall oK interface profile

The overall oK interface profile is hosted in the git-Repository of openK-platform

(openk-platform/openk-cim-v17) as Java packages and classes with Java documentation for

the semantical use of attributes/classes and as Image of an UML class diagram. If extensions

are needed for modules, the module developer has to update this overall model with

needed attributes/classes and their semantical meanings. Thereby it shall be granted, that

module developer take the current available model as basis, that no redundant information

is in the profile and that there is no semantical inconsistency introduced.

Short interface description for each oK-ESB-interface

For each ok-ESB-interface (DEPRECATED - Replace ESB through RESTful Interface), a module

provides/requires, a detailed description of the interface can be found in the

module-specific Arc42-documentation. An overview, which introduces all ok-ESB-interfaces

and lists provider and requirer, can be found in the oK-API document.

TODO for tender

by module developer according to chapter 3:

● Specify provides- and requires-interfaces for the planned module as a first draft (if
there are no yet fitting oK-interfaces).

openKONSEQUENZ Architecture Committee Handbook 22/73

4. Solution Strategy

In the tenders for a module, the module developer has to provide an overall solution

architecture and to define which oK modules are planned to be reused by the module. The

module developer has to specify changes to existing modules, if required. Furthermore, it is

required to follow the oK Multilayer Architecture that is described in this chapter. In the case

of deviation from the oK Multilayer Architecture, a module developer has to ask the ACQC

committee to come to an agreement.

Existing systems, (possible) externally developed modules, oK User Modules, and oK

Platform Modules (Core Modules and Domain Modules) interact on basis of standardized

interfaces (the oK APIs) and run on a reference architecture concept underlying system. A

portal and a UI-Styleguide make it easy for users to work with new modules.

In the tender, the developer lists the libraries that will be used (an IP-check on each new

library is required and shall be the responsibility of the module developer). If libraries with

the necessary capabilities are already listed as “cleared”, they shall be used as a default; any

project who wants to override the default list needs to present rationale and needs the

approval of the architecture committee.

IP-checks can be long-running tasks. It is strongly recommended to perform an IP-check

before creating the tender. Any planning, estimation, design or implementation based on a

library that does not pass the IP-check is wasted.

The remainder of this chapter describes the oK Multilayer Architecture in general before the

elements of the architecture are described in detail.

TODO for module developer in tender:

● provide overall solution architecture that fits to the oK Multilayer Architecture, list

of reused modules, changes to reused modules, list libraries that will be used.

openKONSEQUENZ Architecture Committee Handbook 23/73

4.1 oK Multilayer Architecture

The following illustration shows the oK Multilayer Architecture. It contains four layers and

APIs in between. This architecture provides a general structure for the openKONSEQUENZ

software. Each oK module has to be located at some point in this architecture and the

communication of the modules has to use the corresponding APIs. The goal of this

architecture is to support reusability and understandability for users, module developers,

and system integrators.

The four layers (User Modules, Platform Modules, Source System-Abstraction, and Source

Systems) contain components, systems and adapters. The Platform Module layer

distinguishes Core Modules and Domain Modules.

The APIs in the oK Multilayer Architecture represent a set of concrete APIs between the

layers. The APIs are an important part of the vision of openKONSEQUENZ in terms of

standardization and modularization. The Platform API is between the User Modules and the

lower layers and the Source System APIs separate the openKONSEQUENZ software from the

Source Systems and the Source System-Abstractions. The Platform API itself combines the

Core API and the Domain API.

openKONSEQUENZ Architecture Committee Handbook 24/73

4.2 Platform Modules

The Platform Modules Layer in the oK Multilayer Architecture consists of the Platform

Modules (containing the Core Modules and the Domain Modules).

Currently, openKONSEQUENZ has a pilot module that manages an integrated topology

model and there are ongoing discussions how to systematically develop the platform. The

initial eclipse project oK-Platform currently hosts the platform but also temporarily contains

an User Module.

4.3 Platform API

The Platform API is the set of all interfaces (and versions) for the oK Platform Modules. It is

expected to be used by User Modules.

4.4 Source Systems

In the Source Systems layer are the typical systems of a DSO, such as:

● GIS (geographic information system)

● SCADA (supervisory control and data acquisition)

● DMS (distribution management system)

● ERP (enterprise resource planning)

These Source Systems are usually proprietary solutions with mostly vendor-specific

proprietary interfaces. In some cases, even solutions from the same vendor have a

customer-specific configuration and customer-specific data structures. The source systems in

the proper sense are not part of the openKONSEQUENZ solution.

These Source Systems are responsible for a large part of the data that is used by the oK

modules. These systems are responsible (leading; “führend”) for a certain subset of the data

that is relevant for the operational use cases of a DSO. For instance the DMS provides

information about the actual grid status, the GIS provides detailed information about the

static topology, and the ERP provides master data for instance for the renewables.

4.5 Source System-Abstraction

Usually, it is not possible to directly connect the Source Systems with the oK Platform. The

Source Systems usually only have interfaces that are proprietary, low level, or without

specified machine-readable semantics because of the lack of adequate standards. The

“Source System-Abstraction” layer contains adapters that implement the Source System API.

It is expected that adapters in this layer will have to do more than just value mapping and

therefore requires explicit programming.

openKONSEQUENZ Architecture Committee Handbook 25/73

This layer can be optional in the case when a future release of a source system directly

supports a particular oK API.

4.6 Source System API

The Source System API provides interfaces between source systems and the oK modules.

This API defines a common view on Source Systems for the oK modules. This simplifies the

development of oK modules as only the API has to be addressed - this API abstracts from

details of the Source Systems of a DSO. Additionally, the Source System API generalizes from

vendor specific proprietary interfaces to allow the development of User Modules that are

independent from Source System vendors. Moreover, the Source System API decouples the

User Modules from the Source Systems, so that changes in the source system landscape of a

DSO has far less impact on the User Modules than without such an API. Technically, this API

could be considered an application of the facade pattern.

4.7 Domain Modules

The Domain Modules provide domain-specific services to multiple User Modules that go

beyond the services that are provided by the source systems (via the Source System API).

The main idea behind Domain Modules is to have focused User Modules with little overlap

and Domain Modules that provide shared services for User Modules. See also the design

decision “Service Components for more than one Module” in the design decision chapter.

Domain Modules can provide a optimized or even required way to access Source System

data for instance by integrating the data of multiple Source Systems and by caching Source

System data. The caching can be suitable to increase the data availability from Source

Systems that are not high-availability and the caching can prevent that User Modules cause

too much load on the Source Systems.

For a concrete installation of openKONSEQUENZ software at a DSO, it is only required to

install the subset of the Domain Modules that is required by the User Modules the DSO

wants to use. Therefore, a DSO only needs to implement adapters for a subset of the oK

Source System API.

Multiple implementations of the same Domain Module can exist, and a Domain Module

implementation might be only a wrapper for a non-oK module. For instance, it can be

beneficial to have multiple implementations for providing renewable feed-in forecasts even

in the same system.

openKONSEQUENZ Architecture Committee Handbook 26/73

https://en.wikipedia.org/wiki/Facade_pattern

openKONSEQUENZ aims to provide for each Domain Module an own open source

implementation or an adapter to an open source library which provides the required

functionality.

Topology management

The topology management (formerly called CIM-Cache) is a Domain Module that hosts an

integrated topology data module and services to access it. The data is integrated from

multiple Source Systems. In the future, Source Systems shall automatically update relevant

changes.

So far, a pilot implementation of the topology management exists which focuses on

feed-in-management (“Einspeisemanagement”). Currently, (08/2016) an API is specified for

the topology management.

4.8 Domain Module API

The Domain Module API is the set of all interfaces (and versions) for the oK Domain

Modules. The Domain Module API is used by User Modules, by Domain Modules, and also

by Source Systems (e.g., for publishing updates). Core Modules must not depend on the

Domain Module API.

4.9 Core Modules

Core Modules provide services for cross cutting concerns

(https://en.wikipedia.org/wiki/Cross-cutting_concern) in a standardized way for the

oK-modules. In contrast to Domain Modules, Core Modules are not specific to the domain of

openKONSEQUENZ (which is described in the system context chapter; i.e. software for

operating distribution grids).

It is expected that openKONSEQUENZ does not need to provide own implementations for

most Core Modules because suitable open source libraries exist elsewhere. For those cases,

the Core Modules will only be adapters that implement the Core API to provide an oK

standardized way to connect the external open source library.

Candidates for Core Modules are:

● Access Control (Authentication and Authorization). There is no implementation of

this module in oK, so far. It could be implemented using for instance with the open

source solution Keycloak.

● Common logging

● Monitoring: This module is responsible for technical monitoring in terms of verifying

that the oK services are operational and alerting if this is not the case. There is no

implementation of this module in oK, so far. It could be implemented using for

instance with the open source solution Icinga. This monitoring should not be

openKONSEQUENZ Architecture Committee Handbook 27/73

https://en.wikipedia.org/wiki/Cross-cutting_concern

confused with the User Module “Betriebstagebuch” (Operation Diary): The technical

monitoring is primarily intended for IT staff while the Operation Diary is used by the

grid operation staff of the DSO.

● Reporting

4.10 Core Modules API

The Core Modules API is the sum of all interfaces (and versions) for the oK Core Modules.

The Core Module API is used by Domain Modules and by User Modules (via the Platform

API).

4.11 User Modules

The oK User Modules are the domain applications in openKONSEQUENZ. Typically they

implement one or multiple related use cases in the domain of openKONSEQUENZ (see

system context chapter) and have directly interaction with end users via user interfaces.

They only access data and services via interfaces that are defined in oK. The User Modules

can use all oK APIs (Source System API, Platform APIs (Core Module API, Domain API)).

However, the User Modules have to use oK Platform APIs if these provide required data from

source systems instead of directly accessing the source systems via the Source System APIs.

There can be exceptions to this constraint.

openKONSEQUENZ Architecture Committee Handbook 28/73

5. Building Block View

The openKONSEQUENZ building blocks are the User Modules and the Platform Modules

(Domain Modules and Core Modules), as specified in the oK Multilayer Architecture in the

chapter on the solution strategy. All oK Modules are independent software components.

They’re connected to each other by provides and requires interfaces. New modules can be

build using existing modules interfaces and information (via the interfaces).

5.1 Level 1

Core API

Technical services (e.g. authentication/authorization) are accessible via the Core API. The

technical services shall be used by all Domain Modules and all User Modules, their

functionality is offered centralized by the oK platform. The oK architecture will evolve over

time offering more and more Core Modules. The repository of technical services will be built

up incrementally with each project. Whenever a project needs such a technical service, it

has to specify its requirements to the functionality and API of the service.

There are three possible scenarios:

1. The oK service exists, and the API and functionality of the oK service are sufficient for

the project’s needs.

The project documents its usage of the service. The service is modeled as an external

actor of the projects domain or user services.

2. The oK service exists, but adaptations are required to meet the new project’s

requirements.

The project has to document a change request based on its requirements to the

service. The AC/QC will review the required changes. If the AC/QC releases the

change request, the change will be implemented (typically by the project itself). If

the AC/QC rejects the change request, the project has to use the API and

functionality as it is.

3. An oK service does not yet exist, it has to be defined as new technical service.

The project will modify/extend its requirements to take into account future re-use of

the service. Based on these generic requirements, the project suggests functionality

and API for the new technical service. The AC/QC and the PPC will review the new

definition. If the definition is rejected the, the project has to re-iterate the

specification and the new definition will be reviewed. If the definition is accepted,

the project shall implement a prototype for the service (Ideally, the project uses an

open-source component that fulfills the requirements and has been cleared by an IP

management process). The implementation shall be managed in its own project

structure to be independent from the projects domain functionality.

openKONSEQUENZ Architecture Committee Handbook 29/73

A project shall declare its usage of Core APIs at bidding time, the tender has to contain a list

of technical services required. For each technical service, the project shall document the

usage scenario according to the list stated above.

For example, a project may specify that it needs an authentication service. The project

reviews the Core API of openK and finds the authentication service to be sufficient. The

project documents this by indicating Scenario 1 for authentication. On the other hand, a

project may specify “Technical Service used: Monitoring module health – Scenario 3” which

means that the project wants its domain services monitored, but the API required to do this

doesn’t exist yet.

The following three simplified examples show, which case falls in which scenario (here

exemplarily for authentication (auth) if an ok authentication service exists):

Scenario 1:

REQ1: This project requires a user/password based authentication.

REQ2: Usernames shall be 6-10 characters

REQ3: Passwords shall be 8-20 characters

REQ4: If correct user/password is entered, an auth token shall be returned to the client.

Verdict from project and AC/QC: “Technical Service ‘Authentication v1.0’ according to its

documentation v1.0 offers all required functionality.”

Usage:

openKONSEQUENZ Architecture Committee Handbook 30/73

Scenario 2:

REQ1: This project requires a user/password based authentication.

REQ2: Usernames shall be 6-10 characters

REQ3: Passwords shall be 8-20 characters

REQ4: If correct user/password is entered, an auth token shall be returned to the client.

REQ5: Password patterns (e.g. ‘Password shall contain lowercase and uppercase characters

and digits’) shall be configurable.

Verdict from project and AC/QC: “The implementing open source component behind the

‘Authentication 1.0’ API is able to handle custom rules as required. The auth/auth Core

Module has to be extended in order to read the rules from a configuration file, and to

evaluate and enforce them during password modification. No new Core Module is required.“

Usage:

Scenario 3:

REQ1: This project requires a user/password based authentication.

REQ2: Usernames shall be 6-10 characters

REQ3: Passwords shall be 8-20 characters

REQ4: If correct user/password is entered, an auth token shall be returned to the client.

openKONSEQUENZ Architecture Committee Handbook 31/73

REQ5: Password patterns (e.g. ‘Password shall contain lowercase and uppercase characters

and digits’) shall be configurable.

REQ6: As an alternative to REQ1, usage of openID provider and hardware-based

authentication (Smartcard or Bluetooth token) shall be possible.

Verdict from project: “The open source chosen to implement ‘Authentication v1.0’ is

insufficient. A new core module has to be developed, which is able to collaborate with

openID provider systems”.

Verdict from AC/QC and PPC: For future re-use add the following requirement

REQ7: Biometric authentication shall be possible.

Then implement a prototype.

Table of Core Modules

Purpose API doc link Implementation Comments

Authentication Keycloak1 Keycloak Implementation
Module eLogbook

Authorization Keycloak Keycloak Implementation
Module eLogbook

Logging Not yet defined Not yet defined

Please note that the first Core Module selected is keycloak for Authentication and

Authorization. The openKONSEQUENZ comittees (SC, AC and QC) have selected keycloak as

an implementation module based on an estimation of the requirements and past experience

using keycloak. The API definition - which has to be reused by further modules - is done in

the eLogbook implementation project.

Auth²

Auth² is the Core Module implementing authentication and authorization protocols.

Keycloak (http://www.keycloak.org/) is used as an implementation component.

As a shortcut, Auth² will currently be accessed directly via the Keycloak API. This will be

replaced by org.eclipse.openk.auth2, an oK specific Auth² API shortly. The oK Auth² API will

be an abstraction of the Keycloak API and is put into place due to possible migration and

maintainability.

1 Currently, keycloak is integrated in eLogbook module. It shall be used indirectly in a core
module. The eLogbook implementation project has created an abstraction to the Keycloak
API in order to decouple keycloak and be able to switch the implementation in the future.

openKONSEQUENZ Architecture Committee Handbook 32/73

Logging

Next Core Module…

Domain API

Eisman

The Domain Modules known as “CIM Cache”

In the following, the three Domain Modules "TopologyDataManagement",

"AssetDataManagement" and "MeasurementDataManagement" will be described. These

Domain Modules are sometimes summarized under the term "CIM Cache" and have a

central role in the openKONSEQUENZ platform, as these modules hold the integrated data

model for higher level tasks for operating power grids. The CIM-standard-based interfaces

are used to integrate and export data into and from the module. The major purpose of these

CIM cache modules is to provide a shared data repository for faster, more directed and

simplified access to data that is distributed and fragmented over several Source Systems,

openKONSEQUENZ Architecture Committee Handbook 33/73

that have in some cases low availability (e.g., a GIS might have an availability of 97%, which

might be sufficient if it is used only as documentation system).

Especially these Domain Modules will be subject to regular future extensions, because

future User Modules might require data that is not yet in the data model. Such extensions

may modify the interfaces (e.g., by adding attributes and entities) and possibly add new

interfaces. Additionally, the current descriptions are prior to implementation and may

change during implementation and further connectional architectural discussions.

In a concrete installation, only the interfaces need to be implemented that are required by

the User Modules that the DSO wants to use. Furthermore, there might be even more

Domain Modules that are part of the CIM Cache module group, such as a module for caching

events.

The development and APIs of the CIM Cache domain modules starts by focusing on the

feed-in management use case, which is subject of the first user module and based on plans

for a basic power grid state estimation module (which distributes eclectic power

measurements to lower level elements based on profiles). The feed-in management use

case is a good starting point, because it combines static topology, dynamic topology, asset

management data and current power measurements. These use cases need a data model

that can be used to answer the following (here simplified and generalized) questions:

● Which power generators (e.g., PVs or wind parks) are connected to which power

transformer under the current switching state of the power grid?

● Which (HV/MV) power transformers are in the power grid?

● What is the current (i.e., last) active power measurement for a power generator (if

this power generator provides measurements)?

● What are the measurements by sensors that are installed in the power grid (e.g.,

sensors located at power transformers, near to feeders or at secondary substations)?

● How are (primary and secondary) substations, power generators, feeders,

consumers, generators topologically related (i.e., electrically connected)?

The three Domain Modules divide the CIM Cache into modular parts based on the decision

that:

● different structural types of data (e.g., topology graph, lists of asset data, time series

data) each having its own optimal data management strategy,

● to have independently deployable modules, since not every DSO will need all parts of

the CIM Cache, and

● the CIM Cache is grouped into parts depending on the semantic type of data (e.g.,

static topology that changes only by grid construction, dynamic topology data such as

switch positions, asset management data of feed-in generators and grid

infrastructure, and measurement data that changes frequently).

openKONSEQUENZ Architecture Committee Handbook 34/73

However the separation of the CIM Cache in multiple modules still means that the data is

connected between the modules.

TopologyDataManagement (TDM)

This domain module manages the current topology of power grids. Later, it might also

contain potential and planned (switching state) topologies, but not in the first

implementation steps. This includes logic to build up topology data models from the source

system APIs and logic to provide the data and to answer certain questions (e.g., is a grid

element electrically connected to a power transformer).

The TDM includes:

● static topology information with grid infrastructure elements, such as wires,

switches, transformers with some master data and their topological context

● dynamical topology information, such current switching and (later) tap-changer

switching state

● current or recent measurement data of grid sensors (e.g., from sensors in

substations)

The TDM does not include:

● no complete master data for assets

● no measurement data history (i.e., it is not an archive / historian)

● no forecast data

● no real time measurements

● no planned switching

The TDM provides services for:

● requesting the complete topology and for parts of the topology

● starting a complete rebuild of the topology data model

● refreshing static topology, dynamic topology or measurements

● subscribing to changes to static and dynamic topology

● subscribing to changes of measurement values

The interfaces should as far as possible be implemented as standard CIM profile. For certain

tasks, industry standards such as OPC UA/CIM could be more suitable. The data flow for

TopologyDataManagement is shown in the following figure. Currently, data only flows from

source systems to TDM. Later, a data flow from TDM to source systems could be established

after careful consideration of architectural consequences and additional approval of the AC.

openKONSEQUENZ Architecture Committee Handbook 35/73

The TopologyDataManagement might use Core Modules in the future for tasks such as

authentication/authorization, logging, and technical monitoring.

AssetDataManagement (ADM)

The AssetDataManagement temporally manages a subset of the master data of grid

infrastructure (e.g., transformers) and grid connected devices such as decentralized energy

resources. This master data focuses on major electrical properties and on some

non-electrical properties that are relevant for operational tasks (e.g., contact information for

a decentralized energy resource). This module should not be confused with a general Asset

Management System - this module holds a copy of some of the data in the Asset

Management System.

The ADM has interfaces for:

● storing master data of grid infrastructure elements and grid connected devices

● refreshing of the master data

● requesting (total or parts) master data of (all or some) of the grid elements

Any entity (e.g., a transformer or decentralized energy resource) can have a reference to the

topology (via its unique identifier). The data flow for AssetDataManagement is shown in the

following figure. Currently, data only flows from source systems to ADM. Later, a data flow

from ADM to source systems could be established after careful consideration of architectural

consequences and additional approval of the AC.

The AssetDataManagment might use Core Modules in the future for tasks such as

authentication/authorization, logging, and technical monitoring.

MeasurementDataManagement

openKONSEQUENZ Architecture Committee Handbook 36/73

The MeasurementDataManagement stores selected time series data from the power grid

and from consumers and producers that are connected to the grid. It stores measurement

data together with their location in the topology and provides access to this data. It is not an

archive of the complete available measurement data from the OT-Layer (operational

technology layer, e.g., SCADA & DMS).

This Domain Module is not required for the current feed-in management use cases and a

simplified state estimation use case. Therefore, the APIs will be specified at some time later.

The MeasurementDataManagement has interfaces for:

● Creating and initial storing of relevant power system measurement data with its

location in the topology.

● adding new time-value-pairs to existing time series

● accessing time series in a grid area or for a certain grid element

The data flow for MeasurementDataManagement is shown in the following figure. Currently,

data only flows from source systems to MDM. Later, a data flow from MDM to source

systems could be established after careful consideration of architectural consequences and

additional approval of the AC.

The MeasurementDataManagement might use Core Modules in the future for tasks such as

authentication/authorization, logging, and technical monitoring.

Domain-Module Dependencies

The figure above shows the dependencies between the described Domain Modules ADM,

MDM and TDM. The TDM (blue) consists of two services. The core-service provides static

topological-information about the installed conducting equipment. This information can be

used by the second TDM-service (dynamic Topology), that uses the current switch- and

tap-changer-states, to enable the view on the current electrically connected power grid. The

openKONSEQUENZ Architecture Committee Handbook 37/73

ADM, MDM and TDM-dynamic Topology can reference equipment, using the unique

identifier that is provided by the TDM-static Topology-service.

Source-System-APIs

To get data from source systems, such as DMS, GIS, ERP, oK defines source system APIs.

These APIs are developed under the principle of separation of concerns and described using

Swagger. The current status can be found in the ok-API Documents.

5.2 Level 2

Placeholder for module specific internal documentation

openKONSEQUENZ Architecture Committee Handbook 38/73

6. Runtime View

Placeholder for module specific internal documentation

7. Deployment View

The module developer must develop system interface mockups

(https://en.wikipedia.org/wiki/Mock_object) for the external systems or legacy systems that

the developed module needs data from. These mockups shall be integrated in deployment

stages as early as possible, but must be available and integrated in Quality Assurance

Environment for Sprint Reviews. If there is a demand in the tender also for integration of real

systems, one of the DSOs (specified in tender) has to provide appropriate test systems for

integration.

There are several deployment environments required for the different participants and roles.

These deployment environments are based on a reference environment where the reference

platform software is preinstalled. Code check, testing and build/integration/deployment

tools (etc.) according to QC Handbook will be made available on the reference system and

therefore be part of the deployment template accessible for the developers.

The different deployment environments are listed in following table and then detailed:

Environment
Name

Short
description

Logical order
of
deployment

Reference
Environment
usage
(Y = yes -
mandatory,
N = no,
P = possible)

Responsibilit
y

Module
developer's
task

Reference
Environment

The oK
standard
environment
used as
reference
and the oK
overall test
environment

4 Y oK Support
deploying
their
modules

Develop
Environment

Environment
a developer

1 P Developer Up to the
developer

openKONSEQUENZ Architecture Committee Handbook 39/73

https://en.wikipedia.org/wiki/Mock_object

is using for
debug & test
purposes

Integration
Environment

Environment
for checks of
integration
of branches

2 P
(recommend
ed)

Developer Up to the
developer

QA
Environment

Environment
for Sprint
Reviews

3 Y oK Deploy
module &
legacy
system
mocks;
Product
Owner
acceptance

Demo
Environment

Environment
for
demonstrati
on of oK to
“the world”

5 Y oK Integrator or
Developer
(decision of
SC/PPC)

Customer
Environment

DSO
Environment
s for
integration
in DSO
system
landscape,
test, and
production

6 P
(recommend
ed)

DSO -

● Reference Environment - The reference environment is the reference instance for all

other deployment environments and is operated out of an IBM Softlayer Cloud in

Frankfurt am Main.

a. The reference system has the latest accepted version of the oK reference

platform and the modules.

b. Updates to the reference system can be made after successful test and

acceptance in a staging environment that is different from the reference

environment.

c. The reference system is an ‘on demand’ system.

d. The creation of a template from the reference system and storage of the

template in the library allows for easy instantiation for the various other

deployment environments -- test, dev, acceptance, … The creation of a

openKONSEQUENZ Architecture Committee Handbook 40/73

template can be done easily through the cloud management portal

environment:

e. The current configuration of the reference system is based on the experience

from the pilot and will be changed according to the progressing needs.

f. This system is owned by openKONSEQUENZ

● Quality Assurance Environment - is the acceptance environment for sprint and

module acceptance through the SCRUM product owner and the Lead Buyer. The

module needed data of legacy systems must be available as a mockup. Once

accepted, changes can be deployed into the reference system. The quality assurance

environment can either be ‘permanent’ or ‘on demand’ and is owned by

openKONSEQUENZ. A quality assurance environment can easily be deployed using

the reference system template within the cloud environment. Using the cloud

environment specific adaptations to the hardware requirements (like cores, memory

or disk) can also be validated within this environment.

● Integration Environment - is up to the developer but should be near to the quality

assurance environment to ensure the same characteristics. The developer can also

make use of an IaaS platform and template to deploy a template of the openK

reference system. The developer is asked to have his own account to deploy the

reference template within the IaaS platform used by openKONSEQUENZ. To make it

very easy for every application developer and contributor to access a copy of the

reference system for integration test purpose the IBM Softlayer portal allows for easy

use of the defined reference system templates.

openKONSEQUENZ Architecture Committee Handbook 41/73

This integration system possibility from the cloud allows the application developer to

run performance tests and adapt the system environment to meet the requirements

and provide guidance to openKONSEQUENZ for system sizing related to the newly

designed and developed application.

● Demo Environment - it is planned to set up a demo environment including existing

modules. This demo environment will be accessible from external (public IP-address)

and is equivalent to the reference system incl. interaction between the modules and

legacy system mocks. The demo system should be a permanent system and is owned

by openKONSEQUENZ.

The reference environments associations to legacy systems are shown in the following figure

(DEPRECATED as going for microservices). For quality assurance environment and demo

environment, the external data sources (examples the figure are SCADA, ERP, GIS) are

integrated in the oK-Server as system mocks.

openKONSEQUENZ Architecture Committee Handbook 42/73

● Standard Customer Environment - there is not standardized way, how DSO are

splitting up resources on multiple hardware components (see following image for a

possible scenario (DEPRECATED as going for microservices))

It is possible, that the SCADA System has access to the integration server, but not the other

way around.

The architecture principle is based on a service oriented architecture. The decision was

taken not to adopt a micro services architecture at this point in time (DEPRECATED as going

for microservices). This may become more relevant in the future when more and more

Platform Modules and / or applications provide reusable components.

Recommended information for developers according building up an own infrastructure or

using the reference environment in an own hosted VM or on the IaaS

The openKONSEQUENZ reference system is hosted in an IaaS (Infrastructure as a Service)

environment with IBM Softlayer Cloud in Frankfurt/Main.

Image templates of the reference system will be created and made accessible.

Application developers will get access to the reference system templates. A developer can

decide to use an own infrastructure, the .vhd format-templates in a virtual machine or the

IaaS environment. In the latter he can easily deploy these templates for development and or

testing purpose - in the case of using the IaaS environment it is typically in the responsibility

of the application developer to have his own IaaS account and access. It is recommended to

use at least the template in the integration environment.

openKONSEQUENZ Architecture Committee Handbook 43/73

8. Concepts and Non-Functional Requirements

This chapter describes the general concepts and for this architecture handbook relevant

detailed information - irrelevant subchapters remain to keep consistency according to the

Arc42.

General concepts are:

Tiers (see also following image): - DEPRECATED - Replace ESB through RESTful Interfaces

● Client-Side GUI

● Business logic on application server with interface sub tiers to client, ESB/Business

process engine, and module specific persistency (The business layer (if no

BPMN-process) of an application must be placed in the Java application. This layer

shall explicitly not be only a pass-through layer. It needs to hold its own business

objects to get separation between ESB and GUI.)

● Business process engine as possible tier between ESB and application server (Current

applications do not yet require a BPM engine. This may change in the future. The AC

is open to discuss suggestions form application developers.)

● ESB

● Legacy systems adapter

● Legacy systems

openKONSEQUENZ Architecture Committee Handbook 44/73

Data-Exchange:

● Modules interact only via ESB and CIM interfaces (web services, REST, XML, CIM/XML

(RDF)) with other oK modules or external systems.

● Each module must store its own entities in private module-DB(-scheme) (there is no

data exchange between modules using the same DB scheme allowed)

● Communication between different modules or legacy systems only via ESB

● CIM-based ESB communication (IEC 61970 / IEC 61968 / IEC 619325)

Vendor-neutrality:

● Use of Open Source libraries

● Special features of ESB (and other middleware) are not used to prevent

vendor-lock-in

User Interface:

● ok-GUI-Styleguide based on previous work of Minnemedia and openK pilot

○ oK-Design of minnemedia contains

■ Styleguide,

■ Html-pages

■ Bootstrap artefacts

■ JS artefacts

openKONSEQUENZ Architecture Committee Handbook 45/73

Development/Quality/Test:

● Development chain according to Quality Committee Handbook

In Future: Identity and Access Management (in development)

In further subchapters, details of the architecture concept are listed or have to be listed and

documented for each individual module. Empty 8.x subtitles are not of importance for AC

handbook but may be of importance for individual module documentation.

8.1 Domain Models

The interface models of the overall openKONSEQUENZ platform interface and of module

interfaces shall be shown under 3.3. External Interfaces.

8.2 Recurring or Generic Structures and Patterns

Internal module architecture

In the following, an example architecture for the internal architecture of a single oK

Modules is described. This description can be used as template and it is currently not

mandatory (ACQC Meeting 2016-08-29). The following UML component diagram

(https://en.wikipedia.org/wiki/Component_diagram) shows the proposal for an oK-Module:

openKONSEQUENZ Architecture Committee Handbook 46/73

https://en.wikipedia.org/wiki/Component_diagram

openKONSEQUENZ Architecture Committee Handbook 47/73

1 oK-Module

The oK-Module component consists of different components and parts. Some of them have

specific functional requirements and must be implemented especially for the application

purpose. But there are also components and parts, which have common functionality and

features in the oK-context. Some components and parts are not necessary and can be

omitted . They are optional.

● gray components and parts are optional

● blue components and parts are candidates for a common oK-framework library

2 User Interface (optional)

The user interface is an optional component for modules that interact with users. Usually

the Domain Modules have no user interface. The user interfaces are web-applications, that

are connected via a REST/JSON communication with the backend.

3 Module Core

The entire application logic is provided by the module core. It defines the flow control and

manages the interaction of its components and parts to fulfill the functional and technical

requirements.

Business Logic:

This part is the heart of the Module Code. It defines the functional requirements.

Data Model:

This is the application specific data model.

It can be inspired by the CIM standard. But be careful. Usually it is not recommended to use

the CIM-Model as application own data model. It has to be attentively evaluated, if your

performance and software design requirements can be fulfilled. Please also keep in mind

that you have a potentially unwanted dependency to CIM.

Cache (optional):

For performance reasons it is sometimes a good idea to hold often used application data in

the memory. The application can use the optional Cache component for this purpose.

Tracing/Logging:

The Tracing/Logging component records technical and functional events, messages and

errors that occur while the application is running. It can be used to understand or reproduce

malfunctions. It also can be used for archiving purposes and audits. Usually a local-file

and/or application console keeps the trace and log records.

To create homogeneous formed log entries and use comparable log levels, it is recommend

to implement and use a common oK logging component.

4 Application Logging Connector

openKONSEQUENZ Architecture Committee Handbook 48/73

http://wiki.openk.de/index.php?title=Service_Module&action=edit&redlink=1

The Application Logging Connector provides access to the Application Logging Module of the

oK-platform.

5 Authentication Connector

The Authentication Module can be used for authentication purposes. This component

provides access to this module. It should be implemented module independent, so it can be

reused by other oK-Modules.

6 Authorization Connector

The Authorization Connector is similar to the Authentication Connector and provides access

to the common Authorization Module.

7 Job-Scheduling Connector (optional)

Some oK-Modules provides time-dependent processing. With the Job-Scheduling Module it

is possible to control the time-dependant processing of different oK-Modules in the right

chronological sequence. If the current oK-Modules has any time-dependant processing, the

Job-Scheduling Connector enables the access to the common Job-Scheduling Module.

8 Monitoring Connector

Using the Monitoring Module the system operator gets the accurate status information of

every distributed oK-Module at one glance. To enable this functionality, it is necessary that

every oK-Module provides information about its current state. The Monitoring Connector

provides the access to the Monitoring Module.

9 Settings

Normally oK-Modules have a set of configurable values, that are not changed throughout

the entire module runtime. For example, they enable the integration of a module in different

environments or enable/disable optional module features. The component Settings provides

the current configuration. Since the way to access and store settings can be reused, it is

recommend to implement or use a common component of the oK-framework library.

10 Persistence (optional)

With the optional Persistence component, the oK-Module can persist its data. Usually a

database management system is used for this purpose. But the most suitable storing

method depends on the specific needs and requirements of the actual oK-Module.

11 Data Interchange

The Data Interchange component is used to exchange data and information with other

oK-Modules or the source systems.

Since the communication with the Module Core is encapsulated in an interface, the Data

Interchange component can be replaced easily. So it is possible to minimize the costs, when

openKONSEQUENZ Architecture Committee Handbook 49/73

the communication standard or version will be changed. It is also possible to operate

different communication standards or versions concurrently.

Interchange Data Mapping:

The function of this part is to map the data model of the module core to the Interchange

Data Model and vice versa.

Interchange Data Model:

The Interchange Data Model is the representation of the data that should be exchanged with

other oK-Modules or the Source Systems. Usually, but not necessarily, this is a CIM-Data

Model.

It is an indicator for bad software design, if you use the Data Model as Interchange Data

Model. The two models are usually different and have to be maintained independently.

Payload Generator:

This part creates the functional information, that should be transferred to the receiving

oK-Module or Source System

Message Generator:

The Message Generator prepares the message for transferring. It enriches the payload with

meta and routing information that enable the messaging middleware to forward the

message and help the receiver to parse the payload.

Payload Validator:

The Payload Validator checks the functional payloads of the incoming messages, if they meet

the minimum defined requirements.

Message Parser:

Incoming messages will be analyzed and parsed by the Message Parser. The Message Parser

unpacks the payload of the message and transfers it to the Payload Validator.

12 Communication

The reusable Communication component receives or sends the data, that should be

exchanged with other oK-Modules. It complies and implements the guidelines that are

defined in the Communication Guideline.

8.3 Persistency

Java Persistence API (JPA) reference implementation EclipseLink with PostgreSQL and Oracle

DB. The use of special features for each of them is forbidden, to make a potential exchange

of databases and JPA easy. Tests accessing the database must be done without code changes

openKONSEQUENZ Architecture Committee Handbook 50/73

against PostgreSQL and Oracle DB to ensure the correct use of abstraction through JPA and

to ensure the modules are working with both databases correctly. In the sharing database

each module shall have its own database schema or more than one. Different modules are

not allowed to access the same database schema. The module name must be used as prefix

for the database schema names and for database users.

8.4 User Interface

The ok-GUI-styleguide document defines rules and regulations that each module has to

follow, when it provides user interfaces. The GUI-styleguide document is evolving, and will

be extended as required. If the GUI-styleguide does not cover UI concepts needed by a

module, it shall be extended during the module development. The project may suggest an

extension to the GUI-styleguide document, but additions to and changes of the

GUI-styleguide document have to be reviewed, accepted and released by the architecture

committee.

8.5 Ergonomics

See 8.4

8.6 Flow of Control

Intentionally left blank - not relevant at this time.

8.7 Transaction Procession

Intentionally left blank - not relevant at this time.

8.8 Session Handling - DEPRECATED - check eLogbook

User Session Handling: User login and session management is provided by the portal (Liferay

in case of oK). All modules must use the user session management of the portal to achieve

an uniform experience for the user and to ease integration into DSOs environment. User

session management is standardized in JSR 286 portlet specification.

If a module needs management of technical sessions (e.g. sessions with external systems, or

involving multiple services), these aspects have to be described here.

8.9 Security

According to the vision of openKONSEQUENZ (see document oK-vision) the oK-software

must be secure. This chapter will contain the security concept. The concept will define the

implementation of the requirements of the BDEW Whitepaper and will be aligned with its

structure. For the security relevant aspects which are laid down at other locations it will

openKONSEQUENZ Architecture Committee Handbook 51/73

contain references. With increasing amount and functionality of User Modules and Domain

Modules the security concept will be extended.

General Requirements and Housekeeping

Cryptographic standards

When cryptographic standards are selected, only state-of-the-art cryptographic algorithms

and key lengths according to BSI TR-02102-1 shall be used. This is particularly true for the

usage of Transport Layer Security (SSL/TLS) in connections with HyperText Transfer Protocol

Secure (HTTPS) - see BSI TR-02102-2.

Documentation

A complete security architecture does not only comprise technical means. It also describes

operational guidelines considering the available technical base as well as the personnel

controlling the systems. The Documentation of Security Parameters and Security Log Events

or Warnings has to be described according to chapter 5.2, 8.16 and 8.18.

The end user documentation:

● User documentation

● Administration documentation

is demanded by the QC handbook and shall include the Requirements and Assumptions

needed for Secure System Operation.

The security concept is not yet fully specified. A task of the AC is to extend the security

concept according to progress of development. Further subchapters according to security

shall underlie the following structure:

● Base System

● Networks / Communication

● Application

● Development, Test and Rollout

● Backup, Recovery and Disaster Recovery

8.10 Safety

According to the mission statement of openKONSEQUENZ the software is located in a

safety-critical environment. Until further notice, the software will not be directly coupled

with or responsible for functions that might endanger human life or equipment.

Safeguarding life and environment is not in focus for the software.

8.11 Communications and Integration

Intentionally left blank - not relevant at this time.

The integration concept is yet not considered to a sufficient extent. A task of the AC is to
define a concept for replacement / integration of modules.

openKONSEQUENZ Architecture Committee Handbook 52/73

8.12 Distribution

Intentionally left blank - not relevant at this time.

8.13 Plausibility and Validity Checks

Intentionally left blank - not relevant at this time.

8.14 Exception/Error Handling

Exceptions that are part of a modules external interface need to be discussed with the AC

and cleared by it. Each module is responsible for its own error/exception handling as

specified in the list of technologies below. All errors and exceptions shall be logged

according to the logging requirements as specified in the QC Handbook.

8.15 System Management & Administration

Larger software systems are often executed in controlled environments (data centers) under

oversight of operators or administrators. These stakeholders require specific information on

the applications’ states during runtime as well as special means of control and configuration.

In oK, the development processes are separate Processes. On the one hand, oK

development of prototypes and on the other hand the bilateral system integration at the

DSO. Because of this, the need for a proper implementation at this point is even stronger.

The system administrators need information, where and how ticket management systems

can get fault information.

The system management & administration concept is yet not considered to a sufficient
extent. A task of the AC is to specify a central instance for getting tickets for administration
of oK-Platform.

8.16 Logging, Tracing
There are different kinds of logging. Logging for business aspects, logging for administrators,

logging for developers. It is specified in the tender / by Product Owner, which events must

be logged for business aspects.

The Logging shall be implemented using the Simple Logging Facade for Java (SLF4J). As

Implementation for the Logging, for example Log4J, Log4J 2 or logback can be used.

8.17 Business Rules

Intentionally left blank - not relevant at this time.

openKONSEQUENZ Architecture Committee Handbook 53/73

8.18 Configurability

● Modules have to be configurable in that way, that no rebuild is required to run code

in different environments (see chapter 7. Deployment View for different

environments - in especially different operating systems and distributed servers with

different access rights).

● Module specific configuration has to be done in one module-central file. All

configuration parameters shall have meaningful default values. The semantics, value

ranges, and interdependencies of all configuration parameters shall be documented

as a part of the modules architecture description.

8.19 Parallelization and Threading

Intentionally left blank - not relevant at this time.

8.20 Internationalization

By default, all user interface elements shall be internationalized. I.e. all strings, colors,

number/date formats, fonts, … need to be configurable. Each module has to provide a

german nationalization.

8.21 Migration

Intentionally left blank - not relevant at this time.

8.22 Testability

See QC handbook. Projects should support at least daily build-and-test cycles. Important

keywords for this aspect are unit tests and mock objects.

8.23 Scaling, Clustering

Intentionally left blank - not relevant at this time.

8.24 High Availability

Intentionally left blank - not relevant at this time.

8.25 Code Generation

Intentionally left blank - not relevant at this time.

openKONSEQUENZ Architecture Committee Handbook 54/73

8.26 Build-Management

See QC handbook.

8.27 Offline-Module

Some future modules may have a non-functional requirements to work also offline, that

have to be kept in mind in earlier design decisions for the whole platform. In some cases,

workers in the field may need modules functionality even if their device is offline (from

IT-Network (e.g. there is no active connection to the internet)). Module developers only

need to implement these requirements, if it is explicitly requested in the PPC module call for

tender / definition.

openKONSEQUENZ Architecture Committee Handbook 55/73

9. Design Decisions

Design and technical decisions are listed in the following chapter. �Documentation of design

decisions is useful for a better understanding of existing architecture and shall avoid

non-observance of existing knowledge.

In case of deviation from the openKONSEQUENZ technical decisions by a module, the

module developer has to ask the ACQC committee to come to an agreement.

9.1 Design Decision List

1. Platform components for more than one module

a. Problem: Several modules need the same data/information.

b. Constraints: Data/information shall not be saved redundantly in every piece

of software.

c. Assumptions: Interfaces can be developed for exchange of such information

d. Alternatives:

■ Central Platform Modules

■ Distributed information in modules

e. Decision: Central Platform Modules shall be developed for topology

management, also for Identity & Access Management.

2. Module communication: Communication between modules only via ESB - ESB

DEPRECDATED (but Interfaces not!) So Communication between modules only via

interfaces!)

a. Problem: Modules need information from other modules

b. Constraints: If one module changes, other modules shall not need a change.

c. Assumptions: if modules interact directly via databases, no module is directly

responsible for the database scheme, schemes can be misunderstood or

misinterpreted, so inconsistency in the underlying data is supported.

d. Alternatives: direct access to database, interface communication

e. Decision: interface communication via ESB (ESB DEPRECDATED (but Interfaces

not!) So Communication between modules only via interfaces!), because of

better long term maintainability (independent maintenance cycles between

modules and separated interchangeability during operation)

3. No multitenancy

a. Problem: Multiple DSOs could use one module

b. Constraints: concurrent use of modules by different DSOs

c. Assumptions: Every DSO has its own application server for hosting modules.

d. Alternatives: multitenancy, no multitenancy

e. Decision: No multitenancy

openKONSEQUENZ Architecture Committee Handbook 56/73

4. Portal - DEPRECATED

a. Problem: Users shall not need to register/login for each oK-module

b. Constraints:

■ Single-Sign-On or Workstation Login

■
c. Assumptions: Liferay (DEPRECATED) handles user sessions, configuration &

access rights for portal pages.

d. Alternatives:

■ Liferay

■ oK-self implementation

e. Decision:

■ Liferay DEPRECATED - Requirements to a portal are not clear at the

current state. eLogbook implemented an own entry-point which shall

be reused (up until further advises).

5. Identity & Access Management

a. Problem: Users shall be differentiated and have different access rights to

modules.

b. Constraints:

■ An oK-self implementation is very cost intensive

■ Open source tools shall be used and abstracted via an API

c. Assumptions:

■ Liferay can be used to manage Rights & Roles not only for GUI, but

also for backend.

■ Liferay can incorporate existing LDAP or AD user token

■ Keycloak can be used to manage Rights & Roles in the backend

■ Keycloak can incorporate existing LDAP or AD user token.

■ The use of Liferay may hinder replacement in later point of time

d. Alternatives:

■ Liferay

■ Keycloak

■ Ok-self implementation

e. Decision:

■ Keycloak must be used for Rights&Role Management to enable Access

& Identity Management with a facade (that needs to be developed to

make Keycloak replaceable in oK context) UPDATE: A facade has been

implemented in eLogbook and shall be reused by all further modules.

Please take a look at the eLogbook documentation.

6. ESB Talend vs. Mule - DEPRECATED

a. Problem: Which ESB to choose

b. Constraints:

■ No vendor lock-in, open source

openKONSEQUENZ Architecture Committee Handbook 57/73

■ ESB only transport medium, no higher functions shall be used to

prevent lock-in.

■ Choice of ESB applies only for the reference platform - the DSO may

use others in their production environment.

■ Exchangeability must be ensured

c. Assumptions:

■ Open source ESB prevents vendor-lock-in and can be developed

further, Talend can be used in long term.

■
d. Alternatives: (By previously study) Talend, Mule

e. Decision: Talend (got feedback on request) DEPRECATED - as going to

microservices, a direct communication may be allowed - it is up to the system

operator, if and which central instance to use. If a ESB is needed, on the

reference environment / demo environment this will be a Talend ESB.

7. ESB CIM/REST Interfaces

a. Problem: A founded way to describe DSOs data is needed

b. Constraints: Standardized base,

c. Assumptions: RESTful webservices can be used according to CIM Standards,

REST is easier to integrate than Soap

d. Alternatives: CIM in different Versions, RESTful, Soap

e. Decision: CIM Version 17 or newer, REST

8. BPMN Camunda (not explicitely specified)

a. Problem: Process Engine

b. Constraints:

c. Assumptions:

d. Alternatives:

e. Decision: Camunda (It is suggested to use Camunda for business processes. If

a software developer names an alternative, the AC will discuss this. Camunda

is Blacklisted to Version 7.10 because of failed Eclipse IP-Check. For Version

7.11 the whole Camunda-bpm-platform/process-engine did not pass the IP

Check, due tue licensing issues. The subpackages engine-cdi, engine-plugins,

engine-rest, engine-spring, engine of camunda-bpm-platform in Version 7.11

passed the Eclipse IP Check.

9. Business reporting

a. Problem: some modules need to create human readable reports of business

purposes

b. Constraints:

c. Assumptions:

d. Alternatives: JasperReports Library, BIRT, Crystal Reports

e. Decision: As Crystal Reports is closed source software, JasperReports Library

or BIRT shall be used for generation of business reports.

openKONSEQUENZ Architecture Committee Handbook 58/73

An inspection of licence compatibility to EPL of the listed report tools through eclipse

is not done yet and needs to be triggered (possibly, by the first module utilizing

reports).

10. Code-/Design-/Quality reports as .ad

a. Problem: In which format shall reports for code, design and quality be stored

(and where)

b. Constraints: Easy access (open community) - technologically and according

storage

c. Assumptions: git is used as repository for code. Ascii-documents can be

opened by everyone and easily be managed in git (version history, merge)

d. Alternatives: Wiki, git, word, tex, pdf, .ad

e. Decision: Ascii-documents in git.

11. Publish-Subscribe-Mechanism

a. Problem: Event driven messages shall be exchanged when they occur.

b. Constraints:

■ Subscriber shall be able to subscribe on topics and get messages when

a publisher releases new information on that topic.

■ Messaging shall be scalable;

■ No self-development of publish subscribe mechanism;

■ APIs/packages/libraries to technology shall exist so that they can be

reused;

■ Administration shall be easy;

■ Monitoring event messages shall be possible;

■ Supports security with OAuth2;

■ EPL compatible

c. Assumptions:

■ Infinity throughput is less important than easy configuration / setup.

■ Standard based messaging is better than proprietary.

■ A messaging broker fits more to previous ESB-mindset than an event-store

does. No need to lookup old event-messages of the past in the

pubsub-mechanism.

■ • No ESB functionality of extracting data of the payload is needed. Just

using header / topic information for routing. The header can and must be set

adequately.

d. Alternatives: Kafka, RabbitMQ

■ RabbitMQ is standard based with AMQP; CIM-Messages can be

AMQP-Payload. Kafka protocol is proprietary.

■ RabbitMQ can handle round about 50.000 messages per second on a simple

desktop/laptop computer. RabbitMQ can be scaled vertically by better

hardware, horizontally user driven by different topics or automatically by a

Load Balancer. Kafka can handle even more messages and is easy scalable.

Kafkas Cluster-Feature allows more availability out of box but results in

higher system complexity.

openKONSEQUENZ Architecture Committee Handbook 59/73

■ Set up of RabbitMQ is easier than Kafka.

■ RabbitMQ is a Message Broker while Kafka is an event-store – both

techniques seem to be fine for PubSub – it is an overall architectural

decision, if an event-store is needed. RabbitMQ has less impact for system

landscapes.

■ RabbitMQ can be exchanged by another AMQP-Broker. No need for an oK

own abstraction of a pubsub interface (AMQP is already standard, Broker

RabbitMQ is interchangeable)

■ Kafka has numerous implementations of libraries for different programming

languages. RabbitMQ has even more.

■ Both support monitoring (tools) and security via OAuth2.

■ While Kafka is Apache OSS (maintenance should be fine), RabbitMQ is

Pivotal (3rd Level Support possible) and OSS. RabbitMQ is MPL and Kafka is

Apache License 2.0 and are long developing OSS.

■ Both in addition allow request / response messaging as a party in between,

to separate modules direct connection / dependency (like a service

discovery).

■ Complex Routing of messages it possible in Kafka and RabbitMQ (more than

one receiver, routing rules) based on header or topic information.

■ NDS has chosen RabbitMQ for the same reasons.

e. Decision: RabbitMQ

(AC-Decision from 2018-08-20 + passed Eclipse IP-check for “RabbitMQ Java

Client”-Library in Version 5.2.0 from 2018-09-02)

12. Test outgoing Emails in QA and Demo

a. Problem: Emails for module messages need to be checked/tested in

development and test phases in QA and Demo platform

b. Constraints: outgoing Emails from oK modules shall just be available in resp.

Environment and not go (even accidentally) outside.

c. Assumptions:

■ Own sendmail servers (or alternatives) are hard to configure and

emails may go outside when misconfigured.

■ The test program for mails is just used in QA and Demo-Environment

and not delivered to module customers - so licensing does not matter.

■ It is for debbuging emails not for sending debug mails.

d. Alternatives: http://wiki.openkonsequenz.de/MailHog

e. Decision: Mailhog (AC-Call 2018-12-10)

13. Client Side Package Manager (CSPM)

a. Problem: Maven does not support Angular Development on client side as it is

done for example by NPM. “Bereitschaftsplanung” (Mettenmeier),

“Betriebstagebuch” (PTA) already use NPM for CSPM as well as “Geplante

Netzmaßnahme” (PTA).

b. Constraints: Backend still uses Java with Maven packaging, the discussed

package manager should only handle the client side JavaScript packaging.

openKONSEQUENZ Architecture Committee Handbook 60/73

c. Assumptions: NPM is used by most developers. Additional tools for packaging

like YARN or Webpack make use of NPM and can be selected by individual

needs.

d. Alternatives:

■ NPM – Server & Client Side (we should only use Client Side!) – widely

used

■ YARN – “faster, more secure, more reliable as npm”, Facebook &

Google Background, Upcoming NPM rival for CSPM? Also a Packaging

Tool. Also uses NPM.

■ Webpack – Packaging Tool

e. Decision: NPM shall be used for Client Side Package Managing. (ACQC-Call

2019-05-06)

14. Dependency-Checker

a. Problem: Security issues in used libraries can result in security issues in

modules. Security of used libraries needs to be under constant attention.

b. Constraints: good results but low cost.

c. Assumptions: Build Process is done regularly and it is enough to check while

building modules.

d. Alternatives:

■ Black Duck - Cost intensive

■ OWASP Dependency-Check Jenkins Plugin as cost free alternative

e. Decision: OWASP Dependency-Check-Plugin for Jenkins

https://github.com/jenkinsci/dependency-check-plugin

https://wiki.jenkins.io/display/JENKINS/OWASP+Dependency-Check+Plugin

15. Secondary Database

a. Problem: Many DSOs use Oracle DB for Persistency so the modules shall be

runnable with Oracle DB.

b. Constraints: The connection between modules and databases must be

abstracted through JPA. There shall be no special code / code changes for

connection of the modules to PostgreSQL or Oracle DB.

c. Assumptions: Both, PostgreSQL and Oracle DB support JPA Eclipselink.

d. Alternatives: Oracle DB

e. Decision: PostgreSQL shall still be the database in Reference Platform. For

ensuring the modules to work on Oracle DB as well, the modules need to be

tested against Oracle DB without code manipulations. For testing, the freely

available Oracle DB XE can be downloaded directly or build as a docker

container.

https://www.oracle.com/uk/database/technologies/appdev/xe/quickstart.ht

ml

16. Name - Spaceholder

a. Problem:

b. Constraints:

openKONSEQUENZ Architecture Committee Handbook 61/73

https://github.com/jenkinsci/dependency-check-plugin
https://wiki.jenkins.io/display/JENKINS/OWASP+Dependency-Check+Plugin
https://www.oracle.com/uk/database/technologies/appdev/xe/quickstart.html
https://www.oracle.com/uk/database/technologies/appdev/xe/quickstart.html

c. Assumptions:

d. Alternatives:

e. Decision

9.2 Black List

The following List describes which frameworks / libraries are not allowed / platforms to be

used and explains the reason.

Name Description Reason for prohibition

Camunda Versions < 7.11 Business Process Engine Usage of JSON.org in open
source version (see
JSON.org) until Version 7.10.
Version 7.11 is fine for the
camunda-bpm-platform
subpackages engine-cdi,
engine-plugins, engine-rest,
engine-spring, engine.

JSON-License libraries
JSON.org

Several libraries for handling
of JSON data for different
programming languages

The License contains “The
Software shall be used for
Good, not Evil.” and
therefore is not compatible
with the EPL.

Internet Exlporer (IE) Standard browser in
historical MS Windows
Versions

No longer maintenance of
source code and no future
updates. Code compatibility
for IE is hard to maintain.

Log4J Versions < 2.17.1 Logging-Framework Usage of Log4J versions until
2.17.1 is not allowed for
new / updated modules.

openKONSEQUENZ Architecture Committee Handbook 62/73

10. Quality Scenarios

For quality KPIs and quality assurance we refer to the quality committee handbook, in which

(in parts) formalized QA for continued tests is stated necessary. It gives a minimal set of test

and acceptance rules and KPIs for unit tests.

The quality scenarios for the oK software are not yet considered to a sufficient extent. A task
of the AC is to define hard specific requirements for the oK software, for the reference
platform and quality scenarios for testing these requirements.

openKONSEQUENZ Architecture Committee Handbook 63/73

11. Technical Risks

The technical risks for the platform are not yet considered to a sufficient extent. A task of
the AC is to collect and assess risks for the reference platform’s architecture.

openKONSEQUENZ Architecture Committee Handbook 64/73

12. Glossary

Short Long (engl) German Description

AC Architecture

Committee

Architekturkomitee Gives Framework

and Constraints

according

architecture for oK

projects

AC handbook Architecture

Committee

handbook

Handbuch des
Architekturkommite
es

Textural guideline
for module
developers of
openKONSEQUENZ
modules according
to architecture
related issues (this
document).

ACQC Architecture

Committee and

Quality Committee

Architekturkomitee

und

Qualitätskommitee

AC and QC together

Core Module Core-Modul An oK module that

provides cross

cutting services that

are not special to

the energy domain

but providing

services for multiple

User Modules or

Domain Modules

(see chapter

“Solution Strategy;

oK Multilayer

Architecture”).

User Module Fachliches Modul

oder

Anwendermodul

An oK-application, a

user from a DSO

uses for solving

his/her use case.

openKONSEQUENZ Architecture Committee Handbook 65/73

DSO Distribution System

Operator

Verteilnetzbetreiber

(VNB)

Manages the
distribution network
for energy, gas or
water

Environments Umgebungen Different
environments (env),
from reference env
over develop env
and demo env to
customer env,
where oK modules
can/should/must be
installed to (see
chapter deployment
view)

ESB Enterprise Service

Bus

Central instance for
exchange of data to
overcome
point-to-point
connections
DEPRECATED -
Replace ESB through
RESTful Interfaces.

IaaS Infrastructure as a

Service

Cloud service for
hosting.

IP Intellectual Property Geistiges Eigentum Protections for
copyright, patents,..

Domain Module Domänen Modul An oK module that

provides domain

specific services for

multiple User

Modules (see

chapters: solution

strategy; oK

Multilayer

Architecture)

Module Modul An implementation

for new

functionality in oK.

Differs between

openKONSEQUENZ Architecture Committee Handbook 66/73

User or Platform

Module (see

chapter: solution

strategy)

oK openKONSEQUENZ openKONSEQUENZ Name of the
consortium of DSOs

Platform Module Plattform Modul Domain or Core
Module (see
chapter: solution
strategy)

QA Quality Assurance Qualitätskontrolle Check, if solutions
fulfilling
requirements to
quality

QC Quality Committee Qualitätskomitee Gives framework
and constraints
according to quality
for oK projects

QC handbook Quality Committee

handbook

Handbuch des
Qualitätskommitees

Textural guideline
for module
developers of
openKONSEQUENZ
modules according
to quality related
issues.

Reference

Environment

Referenzumgebung A deployment
environment with
installed Platform
Modules, test data
and selected
oK-standard libraries
/ software to be a
basis for other
environments (see
environments).

Reference Platform Referenzplattform The sum of oK
modules (in
especially Platform
Modules) on which
other modules can
build new services /

openKONSEQUENZ Architecture Committee Handbook 67/73

functionality.

SCADA Supervisory Control

and Data Acquisition

Netzleitsystem System that allows
DSOs view/control
actual parameters of
their power grid.

VPN Virtual Private

Network

Virtuelles privates
Netzwerk

Extends private
networks across a
public network.

openKONSEQUENZ Architecture Committee Handbook 68/73

Appendix I: Module Developer Tasks according to

Architecture Documentation

The architecture documentation for modules has to be done according to this overall

architecture handbook structure in the Arc42-Style as ASCII-Doc in the code repository and

shall be build to a pdf-file during build of the source code. An example can be found in the

repository of the eLogbook. In future, the built documentation file shall be automatically

replace older files during build in a place, that has not yet be defined by the oK consortium.

Documentation language is english.

CIM related modelling has to be done with Enterprise Architect - and the respective

EA-project has to be stored in the repository. Other UML related modelling has to be done

with Modelio - and the repective Modelio-project has to be stored in the repository. Images

shall be included in the ASCII-Doc and in the pdf-document by build.

Chapter Numbers in the green boxes are links to the respective chapter in this overall

architecture documentation / handbook.

TODO for architecture documentation

by module developer according to chapter 1 - Introduction and Goals:

● Document defined module specific functional and non-functional

Requirements/Quality Goals/Acceptance Criteria in the module project's

git-repository in an arc42-document.

TODO for architecture documentation

by module developer according to chapter 3 - System Scope and Context:

● Define module specific scope and context in the module own architecture
documentation (in projects git repository)

● Get overall oK interface profile from ok-platform git repository, update it, if

current version of oK interface profile lacks classes/attributes and commit changes

to ok-platform git repository. Eventually update the oK-API in the wiki.

● Describe own external interfaces (requires and provides) in architecture

documentation, create their UML models and XML Schema Files (in respective

git-repository-directory (see QC-Handbook for directory details). Update the

oK-API in the wiki.

TODO for architecture documentation

By module developer according to chapter 4 - Solution Strategy:

● Describe solution strategy for each module in module own architecture

documentation

openKONSEQUENZ Architecture Committee Handbook 69/73

TODO for architecture documentation

by module developer according chapter 5 - Building Blocks:

● Document, which modules are reused with which interfaces as UML component

diagram in the oK-API document.

TODO for architecture documentation

by module developers using cross cutting API (chapter 5.1 Building Block View Level 1):

● Specify requirements for the service

● Document the decision between the three scenarios stated in chapter 5.1 Core

APIs

● Document the usage/change/implementation of the service according to the

scenario list above.

If the service is changed by the project, the changes have to be documented in the

services documentation.

If the service is newly defined, this has to be done in a separate project, and will be

documented in that project.

TODO for architecture documentation

by module developers according to Building Block View Level 2 (Chapter 5.2):

Document Level 2: Internal components of a module and a logical view have to be

documented as component diagram and class diagram with UML:

● Overview of components and internal interfaces

● Detail specification of “complex’” (according to QC-Handbooks top 2 categories)

modules as UML component and class diagram

● Detailed documentation as JavaDoc

○ Separation between architecture and quality is needed in order of the use

and especially the maintenance of modules

● Database model as entity relationship or UML class diagram

● List existing and new Access rights, that are required by module (and how to create

them).

● Document security relevant system components and implementation specification

(according to BDEW Whitepaper chapter 2.1.2.1, if it has to be applied).

Todo for architecture documentation

by module developer according to chapter 6 - Runtime View:

● Show Interaction of building blocks (components) at runtime for exemplary

processes (use cases / scenarios) with bpmn diagrams (for functional processes)

and sequence/collaboration UML diagrams for technical processes.

openKONSEQUENZ Architecture Committee Handbook 70/73

● Non-trivial processes in the business logic and processes, in which several modules

are involved, have to be modeled as UML sequence or collaboration diagram.

○ Several modules scenarios:

■ Technical documentation of the processes as sequence diagram,

which shows calls between user, modules and external systems.

■ Matching of interfaces of the modules according the functions- or

service calls for quality assurance

○ Module intern scenarios:

■ UML sequence diagram (or collaboration diagram) define

functions-, communications- and data-flows for a scenario

TODO for architecture documentation
By module developer according to chapter 7 - Deployment View:

● Document how the modules builded source is deployed in the reference
environment to get the module started

● Document the external or legacy system mockups (name, which data, which
system(s) the data usually will come from, which external interface is used (name,
version), mockups git-repository position).

● Document requirements and assumptions needed for secure system operation
according to BDEW Whitepaper (if it has to be applied) chapter 2.1.2.4

TODO for architecture documentation

by module developer according to Chap. 8.1 - Domain Models:

● Domain models for the business logic of modules without relation to technology

have to be documented at this point by each module developer.

TODO for architecture documentation

by module developer according to Chap. 8.8 - Session Handling:

● Document the technical sessions management (if needed)

TODO for architecture documentation

by module developer according to Chap. 8.14 - Exception/Error Handling:

● Document which kind of exceptions and errors are handled by the system

● Document Which kinds of errors are forwarded to which external interface and

which are handled fully internally.

TODO for architecture documentation

by module developer according to Chap. 8.15 - System Management & Administration:

● Document where and how a ticket management system can get fault information.

openKONSEQUENZ Architecture Committee Handbook 71/73

TODO for architecture documentation

by module developer according to Chap. 8.16 Logging & Tracing:

● What are expected messages, which meaning does they have and (if necessary)
how a module differs from QC-requirements.

● Document security relevant system messages (according to BDEW Whitepaper
chapter 2.1.2.3, if it has to be applied).

TODO for architecture documentation

by module developer according to Chap. 8.18 - Configurability:

● Check/develop module dependencies according to different environments (see

chapter 7)

● Document configuration files/properties

● Provide configuration file for quality assurance environment

● Document security relevant configuration (according to BDEW Whitepaper chapter

2.1.2.3, if it has to be applied)

TODO for architecture documentation

by module developer according to Chap. 8.26 - Build Management:

● Document, how the overall system is created from its (source code) building

blocks. Document, if directories are in line with the given structure in QC

handbook (Which repositories contain source code, where are configuration files,

test cases, test data and build scripts maven stored).

TODO for architecture documentation

by module developer according to Chap. 9 - Design Decisions:

● Each module has to describe its specific design decisions according to the following

structure in its own architecture document:

1. Name of decision 1

a. Problem:

b. Constraints:

c. Reason for module specific and not global decision

d. Assumptions:

e. Alternatives:

f. Decision:

2. Name of decision 2

a. Problem:

b. Constraints:

c. Reason for module specific and not global decision

openKONSEQUENZ Architecture Committee Handbook 72/73

d. Assumptions:

e. Alternatives:

f. Decision:

3. ...

TODO for architecture documentation

by module developer according to Chap. 10 - Quality Scenarios:

● Each module has to describe its own quality requirements in quality (evaluation)

scenarios and quality tree for sprint and final acceptance

● Test scripts and test handbooks for acceptance of sprints/releases have to be

documented.

● Test datasets (on base of oK common test data - if it exists); have to be generated,

published, coordinated with ACQC and used.

● According to the SCRUM Development process, when defining quality

requirements it is also necessary to define acceptance criteria (the developer shall

remind the product owner to discuss it in sprint planning).

● �Commisioning Tests

TODO for architecture documentation

by module developer according to Chap. 11 - Technical Risks:

● Document the list of identified technical risks (with probability of occurrence,

amount of damage, options for risk avoidance or risk mitigation), ordered by

priority

TODO for architecture documentation

by module developer according to Chap. 12 - Glossary:

● Document important or misleading abbreviations and terms

● Be patient in using the same nomenclature as this handbook

openKONSEQUENZ Architecture Committee Handbook 73/73

