

Architecture​ ​Committee​ ​Handbook

openKONSEQUENZ

created​ ​by

Architecture​ ​Committee

We​ ​acknowledge​ ​that​ ​this​ ​document​ ​uses​ ​material​ ​from​ ​the​ ​arc​ ​42​ ​architecture​ ​template,

http://www.arc42.de​.​ ​Created​ ​by​ ​Dr.​ ​Peter​ ​Hruschka​ ​&​ ​Dr.​ ​Gernot​ ​Starke.

Template​ ​Revision:​ ​6.1​ ​EN

June​ ​2012

1

http://www.arc42.de/
http://www.arc42.de/

Revision​ ​History

Version Date Reviser Description Status

1.0 2016-07-04 A.​ ​Göring Alignment​ ​in​ ​AC/QC​ ​conference​ ​call Released

1.0.1 2016-07-19 A.​ ​Göring Added​ ​UML-Tool​ ​decision​ ​in​ ​chapter​ ​2.

Constraints,​ ​Added​ ​software-tiers

image​ ​in​ ​chapter​ ​8.

Draft​ ​for

v1.1

1.1 2016-08-18 A.Göring Alignment​ ​in​ ​AC/QC​ ​conference​ ​call Released

1.1.1 2016-08-26 F.​ ​Korb,​ ​M.

Rohr

Description​ ​of​ ​architecture​ ​layer​ ​model

and​ ​its​ ​APIs.​ ​Example​ ​internal​ ​module

architecture​ ​(Presented​ ​in

ACQC-Meeting​ ​15.&​ ​29.08.2016)

Draft​ ​for

v1.2

1.2 2016-09-14 A.​ ​Göring Integration​ ​of​ ​Concept​ ​for​ ​Plattform

Module​ ​Developmennt,​ ​Consolidation

v1.1.1

Released

1.2.1 2016-09-16 S.Grüttner Reorganization​ ​of​ ​Chapter7

Deployment​ ​Environment,​ ​clearifying

the​ ​reference​ ​environment​ ​as​ ​“image”.

Adding​ ​cutting​ ​of​ ​CIM​ ​Cache.

Modified​ ​Logging​ ​(8.17)​ ​for​ ​use​ ​of

SLF4J.

Added​ ​potential​ ​non-functional

requirement​ ​for​ ​Offline-Mode.

Draft​ ​for

v1.3

1.2.2 2017-01-30 A.​ ​Göring Adding​ ​Link​ ​to​ ​oK-API​ ​Swagger

Definition,​ ​deleting​ ​old​ ​Interfaces

Annex.​ ​Adding​ ​CIM​ ​Cache​ ​Module

dependencies​ ​image​ ​and​ ​text​ ​(from

Felix​ ​Korb)

Draft​ ​for

v1.3

1.3 2017-02-14 A.​ ​Göring Alignment​ ​in/after​ ​AC/QC​ ​conference

call

Released

1.3.1 2017-09-05 A.​ ​Göring Minimum​ ​requirement​ ​change​ ​from

Java​ ​EE​ ​7​ ​to​ ​Oracle​ ​Java​ ​SE​ ​8.​ ​Added

reporting​ ​tool​ ​decision​ ​as​ ​discussed​ ​in

AC/QC​ ​conference​ ​call​ ​2017-08-28

Released

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 2/65

Formal
According​ ​to​ ​a​ ​decision​ ​of​ ​the​ ​Quality​ ​Committee,​ ​this​ ​document​ ​is​ ​written​ ​in​ ​english.

Document​ ​control:

Author:​ ​Andre​ ​Göring,​​ ​andre.goering@offis.de​​ ​(assistant​ ​of​ ​architecture​ ​committee)

Reviewed​ ​by:​ ​SC,​ ​PPC,​ ​and​ ​QC​ ​of​ ​openKONSEQUENZ

Released​ ​by:​ ​AC

This​ ​document​ ​is​ ​licensed​ ​under​ ​the​ ​Eclipse​ ​Public​ ​License​ ​Version​ ​1.0​ ​("EPL")

Released​ ​versions​ ​will​ ​be​ ​made​ ​available​ ​via​ ​the​ ​openKONSEQUENZ​ ​web​ ​site.

Open​ ​Issues​ ​for​ ​Architecture​ ​Committee​ ​Handbook
This is a living document. Further general architectural topics have to be detailed by the

Architecture Committee and can not yet be answered without further knowledge from

further​ ​openKONSEQUENZ​ ​projects.​ ​​Known​ ​issues​ ​are​ ​listed​ ​red​ ​coloured.

Module​ ​specific​ ​Architecture​ ​Documentation​ ​Hints

GREEN​ ​&​ ​Boxed:​ ​Open​ ​architecture​ ​documentation​ ​issues​ ​for​ ​module​ ​developers​ ​in

module​ ​specific​ ​​arc42-document​ ​or​ ​tender​ ​or​ ​global​ ​oK-CIM-Profile.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 3/65

mailto:andre.goering@offis.de

Related​ ​documents

Document Description

BDEW​ ​Whitepaper Whitepaper​ ​on​ ​requirements​ ​for​ ​secure​ ​control​ ​and

telecommunication​ ​systems​ ​by​ ​the​ ​german​ ​BDEW​ ​Bundesverband

der​ ​Energie​ ​und​ ​Wasserwirtschaft​ ​e.V.

(​https://www.bdew.de/internet.nsf/id/232E01B4E0C52139C1257A5

D00429968/$file/OE-BDEW-Whitepaper_Secure_Systems%20V1.1%2

02015.pdf​)

BSI​ ​TR-02102 Technical​ ​Guideline​ ​according​ ​to​ ​encryption​ ​recommendations​ ​and

key​ ​length​ ​by​ ​the​ ​german​ ​BSI​ ​-​ ​Bundesamt​ ​für​ ​Sicherheit​ ​in​ ​der

Informationstechnik

(​https://www.bsi.bund.de/DE/Publikationen/TechnischeRichtlinien/t

r02102/index_htm.html​)

oK-API The​ ​APIs​ ​to​ ​connect​ ​modules​ ​to​ ​each​ ​other​ ​as​ ​well​ ​as​ ​source​ ​systems

such​ ​as​ ​DMS,​ ​GIS,​ ​ERP​ ​to​ ​platform​ ​components​ ​are​ ​defined​ ​with

Swagger​ ​(​http://wiki.openkonsequenz.de/Source_System_API​)

oK-Charter The​ ​openKONSEQUENZ​ ​charter

(​https://wiki.eclipse.org/images/f/f5/20150623a_openKonsequenz_V

14-3_%283%29.pdf​)

oK-GUI-Styleguide Style​ ​guide​ ​for​ ​module​ ​developers​ ​of​ ​openKONSEQUENZ​ ​modules

according​ ​to​ ​the​ ​graphical​ ​user​ ​interface.

(​http://wiki.openkonsequenz.de​)

oK-Module-Tender

-Call

The​ ​openKONSEQUENZ​ ​project​ ​planning​ ​committee​ ​prepares​ ​a

document​ ​which​ ​describes​ ​the​ ​requirements​ ​to​ ​the​ ​development​ ​for

each​ ​module.​ ​With​ ​this​ ​document​ ​it​ ​calls​ ​for​ ​tenders​ ​at​ ​software

developers

(module​ ​individual)

oK-Module-Tender The​ ​software​ ​developers​ ​answer​ ​to​ ​the​ ​oK-Module-Tender-Call

(module​ ​&​ ​developer​ ​individual)

oK-Vision The​ ​oK​ ​document​ ​“Vision/Mission/Roadmap”​ ​-​ ​it​ ​is​ ​currently​ ​not

available​ ​online.

oK-Website The​ ​website​ ​of​ ​openKONSEQUENZ

(​www.openkonsequenz.de​)

Quality​ ​Committee Textural​ ​guideline​ ​for​ ​module​ ​developers​ ​of​ ​openKONSEQUENZ

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 4/65

http://wiki.openkonsequenz.de/Source_System_API

Handbook modules​ ​according​ ​to​ ​quality​ ​related​ ​issues.

(​https://wiki.eclipse.org/OpenKONSEQUENZACQCRichtlinien​)

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 5/65

Table​ ​of​ ​Contents

1.​ ​​ ​​ ​​ ​Introduction​ ​and​ ​Goals

1.1 Requirements​ ​Overview

Functional​ ​Requirements:

Non-functional​ ​Requirements:

1.2 Quality​ ​Goals

Reference​ ​Platform​ ​​ ​and​ ​Platform​ ​Modules

User​ ​Modules:

1.3 Stakeholders

DSOs

AC

QC

Module​ ​Developer

System-Integrator

2.​ ​​ ​​ ​​ ​Architecture​ ​Constraints

2.1 Technical​ ​Constraints

2.2 Organizational​ ​Constraints

2.3 Conventions

3.​ ​​ ​​ ​​ ​System​ ​Scope​ ​and​ ​Context

​3.1 Business​ ​Context

3.2 Technical​ ​Context

3.3 External​ ​Interfaces

Current​ ​overall​ ​oK​ ​interface​ ​profile

Short​ ​interface​ ​description​ ​for​ ​each​ ​oK-ESB-interface

4.​ ​​ ​​ ​​ ​Solution​ ​Strategy

4.1 oK​ ​Multilayer​ ​Architecture

4.2 Platform

4.3 Platform​ ​API

4.4 Source​ ​Systems

4.5 Source​ ​System-Abstraction

4.6 Source​ ​System​ ​API

4.7 Domain​ ​Modules

Topology​ ​management

4.8 Domain​ ​Module​ ​API

4.9 Core​ ​Modules

4.10 Core​ ​Modules​ ​API

4.11 User​ ​Modules

5.​ ​​ ​​ ​​ ​Building​ ​Block​ ​View

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 6/65

5.1 Level​ ​1

Core​ ​API

Table​ ​of​ ​core​ ​modules

Domain​ ​API

The​ ​Domain​ ​Modules​ ​known​ ​as​ ​“CIM​ ​Cache”

5.2 Level​ ​2

6.​ ​​ ​​ ​​ ​Runtime​ ​View

7.​ ​​ ​​ ​​ ​Deployment​ ​View

8.​ ​​ ​​ ​​ ​Concepts​ ​and​ ​Non-Functional​ ​Requirements

8.1 Domain​ ​Models

8.2 Recurring​ ​or​ ​Generic​ ​Structures​ ​and​ ​Patterns

Internal​ ​module​ ​architecture

8.3 Persistency

8.4 User​ ​Interface

8.5 Ergonomics

8.6 Flow​ ​of​ ​Control

8.7 Transaction​ ​Procession

8.8 Session​ ​Handling

8.9 Security

General​ ​Requirements​ ​and​ ​Housekeeping

8.10 Safety

8.11 Communications​ ​and​ ​Integration

8.12 Distribution

8.13 Plausibility​ ​and​ ​Validity​ ​Checks

8.14 Exception/Error​ ​Handling

8.15 System​ ​Management​ ​&​ ​Administration

8.16 Logging,​ ​Tracing

8.17 Business​ ​Rules

8.18 Configurability

8.19 Parallelization​ ​and​ ​Threading

8.20 Internationalization

8.21 Migration

8.22 Testability

8.23 Scaling,​ ​Clustering

8.24 High​ ​Availability

8.25 Code​ ​Generation

8.26 Build-Management

8.27 Offline-Module

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 7/65

9.​ ​​ ​​ ​​ ​Design​ ​Decisions

10.​ ​Quality​ ​Scenarios

11.​ ​​ ​Technical​ ​Risks

12.​ ​​ ​Glossary

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 8/65

1.​ ​​ ​​ ​​ ​Introduction​ ​and​ ​Goals
The consortium openKONSEQUENZ (oK) consists of Distribution System Operators (DSO),

their software manufacturers, integration service providers and academic institutes. It

targets to overcome vendor lock-in in the hierarchical grown IT-infrastructure of DSOs. The

openKONSEQUENZ® Working group (openKONSEQUENZ® WG) wants to foster and support

an open and innovative eco-system providing tools and systems, qualification kits and

adapters for standardized and vendor independent e-Systems. Therefore

openKONSEQUENZ defines a reference platform, where different modules for different

purposes shall be implemented for and interact with existing parts of the IT landscape and

other​ ​modules​ ​under​ ​development.

This handbook describes the architectural view on openKONSEQUENZ software, its current

overall system and software architecture which developers shall develop in respect to and

what software architecture artifacts (documentation & graphs) developers have to

document during development. In especially the “green colored TODOs” mark important

documentation​ ​that​ ​module​ ​developers​ ​must​ ​create.

These artifacts have to be stored in Arc42 - architecture documentation for each module in

the module specific git-repository (see Quality Committee (QC) handbook for naming and

directory conventions). The architecture guidelines are generally applicable. These

guidelines can be adapted over time based on specific need and/or request from

Architecture Committee (AC) members or third party application developers. A change

management​ ​process​ ​will​ ​be​ ​set​ ​up​ ​for​ ​this​ ​in​ ​the​ ​future.

1.1 Requirements​ ​Overview

The​ ​openKONSEQUENZ​ ​is​ ​an​ ​umbrella​ ​for​ ​a​ ​rising​ ​number​ ​of​ ​projects​ ​with​ ​common​ ​intends:

Functional​ ​Requirements:

● Provide a common interoperable platform, which can unite the data of different

existing systems and offers a streamlined environment for extending these existing

systems by new User Modules. The oK uses open interfaces and reduces or

optimizes​ ​interfaces​ ​where​ ​applicable.

○ What​ ​happens:​ ​different​ ​systems​ ​share​ ​data​ ​along​ ​the​ ​platform.

○ Why:

■ Islands​ ​in​ ​IT​ ​landscape​ ​shall​ ​be​ ​connected​ ​in​ ​an​ ​easy​ ​way

■ To overcome vendor dependent interface development and vendor

lock-in.

● Get software support for new and demanding requirements in context of the energy

policy​ ​turnaround.

○ What​ ​happens:​ ​New​ ​modules​ ​realize​ ​functions​ ​on​ ​existing​ ​information

○ Why:​ ​New​ ​functions​ ​required​ ​to​ ​easily​ ​solve​ ​problems​ ​/​ ​processes.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 9/65

Non-functional​ ​Requirements:

● Requirements for modules according to confidentiality, availability and integrity are

defined in levels normal, high and very high (normal is descripted in BDEW

Whitepaper). The oK reference platform has to be designed for meeting specification

for​ ​levels​ ​high​ ​to​ ​very​ ​high.

● Detailed and hard requirements for the oK reference platform shall be listed in

Section​ ​10​ ​Quality​ ​Scenarios.

Different modules may not only underlie different functional requirements, but also

different non-functional requirements. These are specificated in the tenders for each

module. So the entirety of requirements for modules comes from tender documents, the AC

and​ ​QC​ ​handbooks,​ ​SCRUM​ ​product​ ​backlog​ ​and​ ​SCRUM​ ​sprint​ ​backlog.

1.2 Quality​ ​Goals

Overall Quality Goals of openKONSEQUENZ are detailed in the openKONSEQUENZ Charter

and​ ​listed​ ​in​ ​short:

● process​ ​and​ ​data​ ​integrity​ ​with​ ​standardized​ ​interfaces,

● long​ ​term​ ​maintainability​ ​for​ ​components​ ​to​ ​be​ ​usable​ ​longer​ ​than​ ​15​ ​years,

● compliance​ ​with​ ​frequently​ ​changing​ ​regulation,

● vendor-neutrality,

● availability​ ​as​ ​needed,

● security​ ​for​ ​critical​ ​infrastructure​ ​by​ ​design,

● innovations​ ​in​ ​products​ ​and​ ​development.

There is a need to make a difference between openKONSEQUENZ User Modules, Platform

Modules (Domain Modules and Core Modules) and a reference platform itself to qualify

goals. The reference platform is a standardized host for new modules. Platform Modules are

modules that are to be used in several projects for supply of data or services. User Modules

are that applications, a user from a DSO uses for solving their use case. (For detailed

descriptions see chapter “Solution Strategy”.) For each part, the Quality Goals have to be

discussed individually. Please check also Quality Committee Handbook for quality related

requirements.

Reference​ ​Platform​ ​​ ​and​ ​Platform​ ​Modules

● Flexibility - The reference platform shall allow, that different systems and modules

from different vendors/developers can interact and interoperate, and may be

exchanged​ ​or​ ​recombined.

● Availability - All platform modules that are running on the platform can only be as

available as the platform - same for user modules that are based on platform

modules.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 10/65

● Maintainability (and testability as part of maintainability) - platform and its platform

modules​ ​shall​ ​be​ ​used​ ​longer​ ​than​ ​15​ ​years.

● Integration performance - new implemented functionality of oK own modules and

external​ ​modules​ ​shall​ ​be​ ​included​ ​fast​ ​/​ ​automatically.

● Security​ ​-​ ​the​ ​platform​ ​and​ ​its​ ​modules​ ​need​ ​to​ ​underly​ ​security-by-design

User​ ​Modules:

● Functionality​ ​-​ ​user​ ​modules​ ​must​ ​fulfil​ ​their​ ​functional​ ​requirements

● Integration performance - user modules must be easy integratable in different

production​ ​environments.

● Modifiability (and testability as part of modifiability) - Good documentation (i.e. code

and architecture documentation) makes code changes easier and automatic tests

facilitate​ ​rigorous​ ​verification.

● Ergonomics​ ​-​ ​according​ ​to​ ​oK-GUI-Styleguide.

1.3 Stakeholders

DSOs

Need​ ​software​ ​fulfilling​ ​their​ ​functional​ ​and​ ​non-functional​ ​requirements.

AC

Manages​ ​openKONSEQUENZ​ ​Architecture​ ​demands​ ​and​ ​is​ ​responsible​ ​for​ ​this​ ​document.

QC

Manages openKONSEQUENZ Quality demands and is responsible for the related Quality

Committee​ ​Handbook.

Module​ ​Developer

Is the software developer who develops a module (or the tender for the module). He has to

take the QC handbook and this AC handbook into account, when offering a tender and when

developing​ ​a​ ​module.

System-Integrator

Needs​ ​information​ ​for​ ​integration​ ​of​ ​modules​ ​in​ ​a​ ​specific​ ​DSO​ ​environment.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​chapter​ ​1:

● Document defined module specific functional and non-functional

Requirements/Quality Goals/Acceptance Criteria in the module project's

git-repository​ ​in​ ​an​ ​arc42-document.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 11/65

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 12/65

2.​ ​​ ​​ ​​ ​Architecture​ ​Constraints
In the following section, architecture constraints are listed. This are any requirement that

limit​ ​software​ ​architects​ ​in​ ​their​ ​freedom​ ​of​ ​design​ ​decisions​ ​or​ ​the​ ​development​ ​process:

● License: Open Source-Licence “Eclipse Public License 1.0” with its demands on

Intellectual​ ​Property​ ​(IP)​ ​for​ ​the​ ​usage​ ​of​ ​libraries.

● Commissioning/Hiring/Business: In the consortium, one or more of the DSOs is/are

the driving force for a module. In procurement the Lead Buyer (N-ERGIE AG) is the

contactpoint for business questions. In contrast to this the driving DSO is handling

functional/technical​ ​questions​ ​and​ ​is​ ​responsible​ ​for​ ​commissioning.

● Development​ ​using​ ​SCRUM.

○ Product​ ​Owner​ ​comes​ ​from​ ​the​ ​specific​ ​module​ ​driving​ ​oK​ ​DSO

○ SCRUM​ ​Master​ ​from​ ​the​ ​module​ ​developing​ ​company.

● Quality Control and Acceptance: Sprints + 3 month test operation + See QC

handbook.

● Standardization: Usage of standardized data structures (CIM) and the reference

platform.

An additional architecture constraint is defined in the chapter “Solution Strategy”, which

describes​ ​the​ ​oK​ ​Multilayer​ ​Architecture.

2.1 Technical​ ​Constraints

Technical frameworks or requirements constraining the developing of modules are largely

based on the experience made with the initial pilot application implementation. These are

defined to allow interoperability between the various modules to come and the oK

reference​ ​platform​ ​and​ ​for​ ​oK​ ​reference​ ​platform​ ​enhancements.

When an application developer would like to use different components than those listed

below,​ ​he​ ​has​ ​to​ ​get​ ​approval​ ​from​ ​the​ ​Architecture​ ​Committee.

Software​ ​platform​ ​framework​ ​and​ ​requirements

Basis

components

of​ ​the

reference

platform

Portal​ ​Liferay;

Application​ ​Server​ ​Tomcat;

JPA​ ​EclipseLink;

Database​ ​PostgreSQL;

ESB​ ​Talend​ ​(open​ ​studio​ ​for​ ​ESB)

BPMN​ ​Engine​ ​Camunda

Runtime

engine

Java​ ​Oracle​ ​8​ ​SE

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 13/65

ESB-Interface

s

openKONSEQUENZ-CIM-Profiles​ ​for​ ​APIs​ ​based​ ​on​ ​CIM​ ​17​ ​or​ ​later​ ​via

CIM​ ​RDF/XML​ ​for​ ​topologies​ ​or​ ​deep​ ​nested​ ​structures​ ​and​ ​XML​ ​for

others​ ​via​ ​RESTful​ ​Webservices.

GUI See​ ​oK-GUI-Styleguide

Programming

Language​ ​GUI

AngularJS,​ ​Bootstrap,​ ​jQuery,​ ​REST/JSON​ ​Interfaces

Libraries,

Frameworks,

Components

Used​ ​Libraries/Frameworks​ ​have​ ​to​ ​be​ ​compatible​ ​to​ ​be​ ​used​ ​in​ ​an

Eclipse​ ​Public​ ​License​ ​project.

Maven,

For​ ​Libraries​ ​for​ ​quality​ ​check​ ​and​ ​Continuous

Build/Deployment/Integration​ ​see​ ​QC​ ​Handbook

Programming​ ​Constraints

 See​ ​QC​ ​Handbook

UML-Tooling For​ ​CIM​ ​related​ ​modeling,​ ​the​ ​use​ ​of​ ​the​ ​tool​ ​Sparx​ ​“Enterprise

Architect”​ ​(EA)​ ​is​ ​strongly​ ​encouraged.​ ​If​ ​other​ ​tools​ ​are​ ​used,​ ​a​ ​data

transfer​ ​(export/import)​ ​to​ ​EA​ ​must​ ​be​ ​frictionless,​ ​i.e.​ ​model

structure,​ ​contents,​ ​and​ ​diagrams​ ​have​ ​to​ ​be​ ​transferred​ ​to​ ​a​ ​EA

model​ ​(possible).​ ​For​ ​software​ ​architecture​ ​related​ ​modeling,​ ​an

open​ ​source​ ​UML​ ​tool​ ​shall​ ​be​ ​used.​ ​Up​ ​until​ ​further​ ​notice,​ ​this​ ​tool

is​ ​“Modelio”.

This framework and set of products describes the openKonsequenz reference system

components. Instantiations on grid operator site may get adapted on request by the grid

operator or on recommendation of the system integrator to cope with specific grid operator

requirements regarding i.e. integration with existing ESB, BPM or application server

technology.

2.2 Organizational​ ​Constraints

For​ ​architecture​ ​constraints​ ​responsible​ ​persons/groups​ ​are​ ​listed​ ​below.

Organization​ ​and​ ​Structure

Steering Committee

(SC)

Has​ ​the​ ​final​ ​say​ ​in​ ​every​ ​oK​ ​question.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 14/65

Project Planning

Committee​ ​(PPC)

Plans following projects and specifies requirements for each

individual module. Calls for tenders based on their

requirements, the AC handbook, QC handbook and

oK-GUI-Styleguide.

Architecture

Committee​ ​(AC)

Gives Framework and Constraints for architecture according

to technology, interfaces, reference environments,

architectural concepts, design decision and documentation.

Every difference from their architecture guidelines in module

development has to be approved and agreed by the AC. The

AC may in case of deviation advise the Product Owner to

refuse or accept a sprint acceptance or product acceptance in

architectural​ ​questions.

Quality Committee

(QC)

Gives Framework and Constraints for quality of the software,

like code quality & styleguides, testing, build. These quality

aspects also mirror back to architecture questions (and vice

versa).

Product​ ​Owner​ ​(PO) Gives and prioritizes requirements and acceptance criteria in

Product Backlog for Sprint Planning / Backlog and checks their

fulfilment in sprint reviews and may by this limit architectures

solution space of a module. The PO may refuse a sprint or

product acceptance cause of non-fulfilment of architecture

requirements.

SCRUM​ ​Master​ ​(SM) Is responsible for the success of the SCRUM. SM checks for

Compliance with the SCRUM Process and ensures as well the

communication between module developers and PO. SM

helps PO at maintaining the Product Backlog and the

developer​ ​at​ ​the​ ​definition​ ​of​ ​done.

The modules are developed in Eclipse Projects. User modules may be developed in closed

projects, where only the contractor for module development is a Committer (According to

the committer rules of Eclipse Project). Platform Modules (Domain Modules and Core

Modules) shall be developed (further) in the oK platform project, where oK-Core-Developer

(that​ ​need​ ​to​ ​be​ ​established)​ ​are​ ​Committer.

2.3 Conventions

● Architecture related module specific documentation has to be documented in the

module specific git repository (see QC Handbook for directory & type advises)

according to the Arc42 template. Documentation language is english. In especially

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 15/65

the “green colored TODOs” mark important documents/arc42-parts, that have to be

created​ ​by​ ​module​ ​developers.​ ​Use​ ​UML​ ​for​ ​graphs!​ ​(For​ ​Tooling​ ​see​ ​chapter​ ​2.1).

● See “QC Handbook” (for coding styleguides, quality reports, naming conventions,

version​ ​and​ ​configuration​ ​management...)

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 16/65

3.​ ​​ ​​ ​​ ​System​ ​Scope​ ​and​ ​Context
The openKONSEQUENZ develops modules for the operation of distribution grids according

to current IT technologies and regulation. These modules extend the functionality of SCADA,

often coupled with other business systems of a DSO. The openKONSEQUENZ hosts User

Modules and Platform Modules. The User Modules offer extended functionality, that the

current solutions do not provide (either in functionality or in quality). The Platform Modules

(Core Modules and Domain Modules) provide domain-independent and energy domain-

applied services, that are needed for a variety of User Modules, external modules or even

the current existing IT systems. Therefore the modules communicate with each other and

with the existing IT infrastructure via interfaces to gather and distribute the necessary data

for​ ​operation.

● Main focus is the communication between different modules on business logic tier

to ensure communication between different systems in different settings from

different​ ​DSOs.

● As transport medium, the Enterprise Service Bus is required to handle all

communication between User Modules and Platform Modules as well as to existing

business​ ​systems.

● No direct communication between modules and especially no communication via

direct​ ​access​ ​to​ ​the​ ​same​ ​database​ ​schemes​ ​shall​ ​exist.

● Also the tier-wise communication between graphical user interface and business

logic​ ​is​ ​in​ ​focus​ ​of​ ​openKONSEQUENZ.

​3.1 Business​ ​Context

In openKONSEQUENZ additional modules for distribution network operation are developed,

that are usually located outside of a SCADA system. A long term view is shown in the

following picture according to the Smart Grid Architecture Model plane. A use of

openKONSEQUENZ modules is also imaginable in the TSO domain, the components shown

in the figure then move one column to the left. Module developers have to have in mind,

that​ ​DSOs​ ​often​ ​separate​ ​the​ ​operation​ ​zone​ ​into​ ​common​ ​operation​ ​and​ ​SCADA.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 17/65

Neighbouring​ ​systems​ ​of​ ​modules​ ​are

● existing​ ​DSO​ ​systems

○ SCADA,

○ GIS,

○ ERP,

○ CRM,

○ Weather​ ​forecasts

○ …

● Other​ ​Platform​ ​Modules

○ Topology​ ​Management(pilot)

○ Archive​ ​(planned)

○ Identity​ ​&​ ​Access​ ​Management​ ​(planned)

○ ...

● Other​ ​user​ ​modules

○ Eisman​ ​(feed-in​ ​management;​ ​pilot)

○ Operation​ ​Diary​ ​(planned)

○ Switch​ ​Request​ ​Management​ ​(planned)

○ ...

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 18/65

3.2 Technical​ ​Context

The typical system landscape of DSOs is characterized by heterogeneous data models in

closed legacy systems with proprietary interfaces. Because of this, there are high integration

barriers and -costs that slow down grid operators and software suppliers (redundant data

management, inconsistencies, adapter dev.,...). The oK approach is to drive open

interfaces/data models based on CIM standard with standardized semantics and less

misunderstandings​ ​and​ ​proprietary​ ​knowledge.

According to the following figure, there is to differ between inner module communication

between the business layer and the UI layer (called REST in the figure) of a module and

module​ ​external​ ​communication​ ​or​ ​inter-module​ ​communication​ ​(called​ ​CIM​ ​in​ ​figure).

For the module external communication (called CIM in figure) interfaces to all systems of

DSOs​ ​have​ ​to​ ​be​ ​taken​ ​into​ ​account​ ​under​ ​following​ ​aspects:

● As a basis, the Common Information Model - CIM (in current development Version

17 or newer) is/has to be used for definition of interfaces. It provides an ontology for

equipment in the electrical domain, giving semantics and syntax of attributes,

associations​ ​and​ ​classes​ ​in​ ​an​ ​object​ ​oriented​ ​way.

● This includes the use of serialization format RDF (CIM/XML) for topology or deep

nested structures and XML for all others as well as the use of CIM-envelopes (See IEC

61968-100).

● If a module is not using this serialization format, it has to be reasonably explained

and​ ​documented​ ​and​ ​needs​ ​an​ ​authorization​ ​of​ ​the​ ​ACQC.

● As​ ​interface-technology​ ​RESTful​ ​web​ ​services​ ​are​ ​used.

● For each external interface (interfaces between modules or external systems) the

interface​ ​has​ ​to​ ​be​ ​documented​ ​in​ ​this​ ​document.

● Interfaces​ ​have​ ​to​ ​be​ ​designed​ ​under​ ​the​ ​interface​ ​segregation​ ​principle.

● For checking out interoperability of interfaces, the existing overall

openKONSEQUENZ interface schema must be extended by the module developer -

this shall ensure reutilization of existing parts of the schema and avoid

inconsistencies​ ​in​ ​semantics/syntax.

● Dependencies of modules to services realized by other modules have to be specified

and​ ​documented​ ​explicitly.

● When CIM is not appropriate (like access management), other standards in their

respective domain shall be taken into account first to avoid proprietary and

inaccurate interfaces. The interface has also be documented in the overall

openKONSEQUENZ interface profile and it should use REST & XML - otherwise

reasonably​ ​explained​ ​and​ ​documented​ ​exceptions​ ​have​ ​to​ ​be​ ​approved​ ​by​ ​ACQC.

● In the future a development of shared DSO CIM profiles comparable to entso-e

profiles is planned: The particular models of a certain grid relating messages or files

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 19/65

are conform to the overall oK-DSO-CIM-profile specification, which itself shall be

conform​ ​to​ ​the​ ​official​ ​(future)​ ​CIM​ ​standard.

For inner module communication (called REST in the figure) RESTful Webservices shall be

used with json serialization, which fits well for the JS-GUI Tier. This is common to User

Modules and Platform Modules. If the latter does not need an UI, the REST called interface

(in​ ​the​ ​figure)​ ​and​ ​UI​ ​can​ ​be​ ​left​ ​away.

3.3 External​ ​Interfaces

Current​ ​overall​ ​oK​ ​interface​ ​profile

The overall oK interface profile is hosted in the git-Repository of openK-platform

(openk-platform/openk-cim-v17) as Java packages and classes with Java documentation for

the semantical use of attributes/classes and as Image of an UML class diagram. If extensions

are needed for modules, the module developer has to update this overall model with

needed attributes/classes and their semantical meanings. Thereby it shall be granted, that

module developer take the current available model as basis, that no redundant information

is​ ​in​ ​the​ ​profile​ ​and​ ​that​ ​there​ ​is​ ​no​ ​semantical​ ​inconsistency​ ​introduced.

Short​ ​interface​ ​description​ ​for​ ​each​ ​oK-ESB-interface

For each ok-ESB-interface, a module provides/requires, a detailed description of the

interface can be found in the module-specific Arc42-documentation. An overview, which

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 20/65

introduces all ok-ESB-interfaces and lists provider and requirer, can be found in the oK-API

document.

TODO​ ​for​ ​tender

by​ ​module​ ​developer​ ​according​ ​to​ ​chapter​ ​3:

● Specify provides- and requires-interfaces for the planned module as a first draft (if
there​ ​are​ ​no​ ​yet​ ​fitting​ ​oK-interfaces).

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​chapter​ ​3:

● Define module specific scope and context in the module own architecture
documentation​ ​(in​ ​projects​ ​git​ ​repository)

● Get overall oK interface profile from ok-platform git repository, update it, if

current version of oK interface profile lacks classes/attributes and commit changes

to​ ​ok-platform​ ​git​ ​repository.​ ​Eventually​ ​update​ ​the​ ​oK-API​ ​document.

● Describe own external interfaces (requires and provides) in architecture

documentation, create their UML models and XML Schema Files (in respective

git-repository-directory (see QC-Handbook for directory details). Update the

oK-API​ ​document.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 21/65

4.​ ​​ ​​ ​​ ​Solution​ ​Strategy
In the tenders for a module, the module developer has to provide an overall solution

architecture and to define which oK modules are planned to be reused by the module. The

module developer has to specify changes to existing modules, if required. Furthermore, it is

required to follow the oK Multilayer Architecture that is described in this chapter. In the

case of deviation from the oK Multilayer Architecture, a module developer has to ask the

ACQC​ ​committee​ ​to​ ​come​ ​to​ ​an​ ​agreement.

Existing systems, (possible) externally developed modules, oK User Modules, and oK

Platform Modules (Core Modules and Domain Modules) interact on basis of standardized

interfaces (the oK APIs) and run on a reference architecture concept underlying system. A

portal​ ​and​ ​a​ ​UI-Styleguide​ ​make​ ​it​ ​easy​ ​for​ ​users​ ​to​ ​work​ ​with​ ​new​ ​modules.

In the tender, the developer lists the libraries that will be used (an IP-check on each new

library is required and shall be the responsibility of the module developer). If libraries with

the necessary capabilities are already listed as “cleared”, they shall be used as a default; any

project who wants to override the default list needs to present rationale and needs the

approval​ ​of​ ​the​ ​architecture​ ​committee.

IP-checks can be long-running tasks. It is strongly recommended to perform an IP-check

before creating the tender. Any planning, estimation, design or implementation based on a

library​ ​that​ ​does​ ​not​ ​pass​ ​the​ ​IP-check​ ​is​ ​wasted.

The remainder of this chapter describes the oK Multilayer Architecture in general before the

elements​ ​of​ ​the​ ​architecture​ ​are​ ​described​ ​in​ ​detail.

TODO​ ​for​ ​module​ ​developer​ ​in​ ​tender:

● provide overall solution architecture that fits to the oK Multilayer Architecture, list

of​ ​reused​ ​modules,​ ​changes​ ​to​ ​reused​ ​modules,​ ​list​ ​libraries​ ​that​ ​will​ ​be​ ​used.

TODO​ ​for​ ​module​ ​developer​ ​according​ ​to​ ​Arc42-documentation:

● Describe solution strategy for each module in module own architecture

documentation

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 22/65

4.1 oK​ ​Multilayer​ ​Architecture

The following illustration shows the oK Multilayer Architecture. It contains four layers and

APIs in between. This architecture provides a general structure for the openKONSEQUENZ

software. Each oK module has to be located at some point in this architecture and the

communication of the modules has to use the corresponding APIs. The goal of this

architecture is to support reusability and understandability for users, module developers,

and​ ​system​ ​integrators.

The four layers (User Modules, Platform Modules, Source System-Abstraction, and Source

Systems) contain components, systems and adapters. The Platform Module layer

distinguishes​ ​Core​ ​Modules​ ​and​ ​Domain​ ​Modules.

The APIs in the oK Multilayer Architecture represent a set of concrete APIs between the

layers. The APIs are an important part of the vision of openKONSEQUENZ in terms of

standardization and modularization. The Platform API is between the User Modules and the

lower layers and the Source System APIs separate the openKONSEQUENZ software from the

Source Systems and the Source System-Abstractions. The Platform API itself combines the

Core​ ​API​ ​and​ ​the​ ​Domain​ ​API.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 23/65

4.2 Platform​ ​Modules

The Platform Modules Layer in the oK Multilayer Architecture consists of the Platform

Modules​ ​(containing​ ​the​ ​Core​ ​Modules​ ​and​ ​the​ ​Domain​ ​Modules).

Currently, openKONSEQUENZ has a pilot module that manages an integrated topology

model and there are ongoing discussions how to systematically develop the platform. The

initial eclipse project oK-Platform currently hosts the platform but also temporarily contains

an​ ​User​ ​Module.

4.3 Platform​ ​API

The Platform API is the set of all interfaces (and versions) for the oK platform modules. It is

expected​ ​to​ ​be​ ​used​ ​by​ ​User​ ​modules.

4.4 Source​ ​Systems

In​ ​the​ ​Source​ ​Systems​ ​layer​ ​are​ ​the​ ​typical​ ​systems​ ​of​ ​a​ ​DSO,​ ​such​ ​as:

● GIS​ ​(geographic​ ​information​ ​system)

● SCADA​ ​(supervisory​ ​control​ ​and​ ​data​ ​acquisition)

● DMS​ ​(distribution​ ​management​ ​system)

● ERP​ ​(enterprise​ ​resource​ ​planning)

These Source Systems are usually proprietary solutions with mostly vendor-specific

proprietary interfaces. In some cases, even solutions from the same vendor have a

customer-specific configuration and customer-specific data structures. The source systems

in​ ​the​ ​proper​ ​sense​ ​are​ ​not​ ​part​ ​of​ ​the​ ​openKONSEQUENZ​ ​solution.

These Source Systems are responsible for a large part of the data that is used by the oK

modules. These systems are responsible (leading; “führend”) for a certain subset of the data

that is relevant for the operational use cases of a DSO. For instance the DMS provides

information about the actual grid status, the GIS provides detailed information about the

static​ ​topology,​ ​and​ ​the​ ​ERP​ ​provides​ ​master​ ​data​ ​for​ ​instance​ ​for​ ​the​ ​renewables.

4.5 Source​ ​System-Abstraction

Usually, it is not possible to directly connect the Source Systems with the oK Platform. The

Source Systems usually only have interfaces that are proprietary, low level, or without

specified machine-readable semantics because of the lack of adequate standards. The

“Source System-Abstraction” layer contains adapters that implement the Source System

API. It is expected that adapters in this layer will have to do more than just value mapping

and​ ​therefore​ ​requires​ ​explicit​ ​programming.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 24/65

This layer can be optional in the case when a future release of a source system directly

supports​ ​a​ ​particular​ ​oK​ ​API.

4.6 Source​ ​System​ ​API

The Source System API provides interfaces between source systems and the oK modules.

This API defines a common view on Source Systems for the oK modules. This simplifies the

development of oK modules as only the API has to be addressed - this API abstracts from

details of the Source Systems of a DSO. Additionally, the Source System API generalizes from

vendor specific proprietary interfaces to allow the development of User Modules that are

independent from Source System vendors. Moreover, the Source System API decouples the

User Modules from the Source Systems, so that changes in the source system landscape of a

DSO has far less impact on the User Modules than without such an API. Technically, this API

could​ ​be​ ​considered​ ​an​ ​application​ ​of​ ​the​ ​​facade​ ​pattern​.

4.7 Domain​ ​Modules

The Domain Modules provide domain-specific services to multiple User Modules that go

beyond the services that are provided by the source systems (via the Source System API).

The main idea behind Domain Modules is to have focused User Modules with little overlap

and Domain Modules that provide shared services for User Modules. See also the design

decision​ ​“Service​ ​Components​ ​for​ ​more​ ​than​ ​one​ ​Module”​ ​in​ ​the​ ​design​ ​decision​ ​chapter.

Domain Modules can provide a optimized or even required way to access Source System

data for instance by integrating the data of multiple Source Systems and by caching Source

System data. The caching can be suitable to increase the data availability from Source

Systems that are not high-availability and the caching can prevent that User Modules cause

too​ ​much​ ​load​ ​on​ ​the​ ​Source​ ​Systems.

For a concrete installation of openKONSEQUENZ software at a DSO, it is only required to

install the subset of the Domain Modules that is required by the user modules the DSO

wants to use. Therefore, a DSO only needs to implement adapters for a subset of the oK

Source​ ​System​ ​API.

Multiple implementations of the same Domain Module can exist, and a Domain Module

implementation might be only a wrapper for a non-oK module. For instance, it can be

beneficial to have multiple implementations for providing renewable feed-in forecasts even

in​ ​the​ ​same​ ​system.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 25/65

https://en.wikipedia.org/wiki/Facade_pattern

openKONSEQUENZ aims to provide for each Domain Module an own open source

implementation or an adapter to an open source library which provides the required

functionality.

Topology​ ​management

The topology management (formerly called CIM-Cache) is a Domain Module that hosts an

integrated topology data module and services to access it. The data is integrated from

multiple Source Systems. In the future, Source Systems shall automatically update relevant

changes.

So far, a pilot implementation of the topology management exists which focuses on

feed-in-management (“Einspeisemanagement”). Currently, (08/2016) an API is specified for

the​ ​topology​ ​management.

4.8 Domain​ ​Module​ ​API

The Domain Module API is the set of all interfaces (and versions) for the oK Domain

Modules. The Domain Module API is used by User Modules, by Domain Modules, and also

by Source Systems (e.g., for publishing updates). Core Modules must not depend on the

Domain​ ​Module​ ​API.

4.9 Core​ ​Modules

Core Modules provide services for cross cutting concerns

(​https://en.wikipedia.org/wiki/Cross-cutting_concern​) in a standardized way for the

oK-modules. In contrast to Domain Modules, Core Modules are not specific to the domain

of openKONSEQUENZ (which is described in the system context chapter; i.e. software for

operating​ ​distribution​ ​grids).

It is expected that openKONSEQUENZ does not need to provide own implementations for

most Core Modules because suitable open source libraries exist elsewhere. For those cases,

the Core Modules will only be adapters that implement the Core API to provide an oK

standardized​ ​way​ ​to​ ​connect​ ​the​ ​external​ ​open​ ​source​ ​library.

Candidates​ ​for​ ​Core​ ​Modules​ ​are:

● Access Control (Authentication and Authorization). There is no implementation of

this module in oK, so far. It could be implemented using for instance with the open

source​ ​solution​ ​Keycloak.

● Common​ ​logging

● Monitoring: This module is responsible for technical monitoring in terms of verifying

that the oK services are operational and alerting if this is not the case. There is no

implementation of this module in oK, so far. It could be implemented using for

instance with the open source solution Icinga. This monitoring should not be

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 26/65

https://en.wikipedia.org/wiki/Cross-cutting_concern

confused with the User Module “Betriebstagebuch” (Operation Diary): The technical

monitoring is primarily intended for IT staff while the Operation Diary is used by the

grid​ ​operation​ ​staff​ ​of​ ​the​ ​DSO.

● Reporting

4.10 Core​ ​Modules​ ​API

The Core Modules API is the sum of all interfaces (and versions) for the oK Core Modules.

The Core Module API is used by Domain Modules and by User Modules (via the Platform

API).

4.11 User​ ​Modules

The oK User Modules are the domain applications in openKONSEQUENZ. Typically they

implement one or multiple related use cases in the domain of openKONSEQUENZ (see

system context chapter) and have directly interaction with end users via user interfaces.

They only access data and services via interfaces that are defined in oK. The user modules

can use all oK APIs (Source System API, Platform APIs (Core Module API, Domain API)).

However, the User Modules have to use oK Platform APIs if these provide required data

from source systems instead of directly accessing the source systems via the Source System

APIs.​ ​There​ ​can​ ​be​ ​exceptions​ ​to​ ​this​ ​constraint.

5.​ ​​ ​​ ​​ ​Building​ ​Block​ ​View
The openKONSEQUENZ building blocks are the User Modules and the Platform Modules

(Domain Modules and Core Modules), as specified in the oK Multilayer Architecture in the

chapter on the solution strategy. All oK Modules are independent software components.

They’re connected to each other by provides and requires interfaces. New modules can be

build​ ​using​ ​existing​ ​modules​ ​interfaces​ ​and​ ​information​ ​(via​ ​the​ ​interfaces).

5.1 Level​ ​1

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​Building​ ​Block​ ​View​ ​Level​ ​1:

● Document, which modules are reused with which interfaces as UML component

diagram​ ​in​ ​the​ ​oK-API​ ​document.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 27/65

Core​ ​API

Technical services (e.g. authentication/authorization) are accessible via the core API. The

technical services shall be used by all domain modules and all user modules, their

functionality is offered centralized by the oK platform. The oK architecture will evolve over

time offering more and more core modules. The repository of technical services will be built

up incrementally with each project. Whenever a project needs such a technical service, it

has​ ​to​ ​specify​ ​its​ ​requirements​ ​to​ ​the​ ​functionality​ ​and​ ​API​ ​of​ ​the​ ​service.

There​ ​are​ ​three​ ​possible​ ​scenarios:

1. The​ ​oK​ ​service​ ​exists,​ ​and​ ​the​ ​API​ ​and​ ​functionality​ ​of​ ​the​ ​oK​ ​service​ ​are​ ​sufficient​ ​for

the​ ​project’s​ ​needs.

The​ ​project​ ​documents​ ​its​ ​usage​ ​of​ ​the​ ​service.​ ​The​ ​service​ ​is​ ​modeled​ ​as​ ​an​ ​external

actor​ ​of​ ​the​ ​projects​ ​domain​ ​or​ ​user​ ​services.

2. The oK service exists, but adaptations are required to meet the new project’s

requirements.

The project has to document a change request based on its requirements to the

service. The AC/QC will review the required changes. If the AC/QC releases the

change request, the change will be implemented (typically by the project itself). If

the AC/QC rejects the change request, the project has to use the API and

functionality​ ​as​ ​it​ ​is.

3. An​ ​oK​ ​service​ ​does​ ​not​ ​yet​ ​exist,​ ​it​ ​has​ ​to​ ​be​ ​defined​ ​as​ ​new​ ​technical​ ​service.

The project will modify/extend its requirements to take into account future re-use of

the service. Based on these generic requirements, the project suggests functionality

and API for the new technical service. The AC/QC and the PPC will review the new

definition. If the definition is rejected the, the project has to re-iterate the

specification and the new definition will be reviewed. If the definition is accepted,

the project shall implement a prototype for the service (Ideally, the project uses an

open-source component that fulfills the requirements and has been cleared by an IP

management process). The implementation shall be managed in its own project

structure​ ​to​ ​be​ ​independent​ ​from​ ​the​ ​projects​ ​domain​ ​functionality.

A project shall declare its usage of core APIs at bidding time, the tender has to contain a list

of technical services required. For each technical service, the project shall document the

usage​ ​scenario​ ​according​ ​to​ ​the​ ​list​ ​stated​ ​above.

For example, a project may specify that it needs an authentication service. The project

reviews the core API of openK and finds the authentication service to be sufficient. The

project documents this by indicating Scenario 1 for authentication. On the other hand, a

project may specify “Technical Service used: Monitoring module health – Scenario 3” which

means that the project wants its domain services monitored, but the API required to do this

doesn’t​ ​exist​ ​yet.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 28/65

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developers​ ​using​ ​cross​ ​cutting​ ​API::

● Specify​ ​requirements​ ​for​ ​the​ ​service

● Document​ ​the​ ​decision​ ​between​ ​the​ ​three​ ​scenarios​ ​stated​ ​above

● Document the usage/change/implementation of the service according to the

scenario​ ​list​ ​above.

If the service is changed by the project, the changes have to be documented in the

services​ ​documentation.

If the service is newly defined, this has to be done in a separate project, and will be

documented​ ​in​ ​that​ ​project.

The following three simplified examples show, which case falls in which scenario (here

exemplarily​ ​for​ ​authentication​ ​(auth)​ ​if​ ​an​ ​ok​ ​authentication​ ​service​ ​exists):

Scenario​ ​1:

REQ1:​ ​This​ ​project​ ​requires​ ​a​ ​user/password​ ​based​ ​authentication.

REQ2:​ ​Usernames​ ​shall​ ​be​ ​6-10​ ​characters

REQ3:​ ​Passwords​ ​shall​ ​be​ ​8-20​ ​characters

REQ4:​ ​If​ ​correct​ ​user/password​ ​is​ ​entered,​ ​an​ ​auth​ ​token​ ​shall​ ​be​ ​returned​ ​to​ ​the​ ​client.

Verdict from project and AC/QC: “Technical Service ‘Authentication v1.0’ according to its

documentation​ ​v1.0​ ​offers​ ​all​ ​required​ ​functionality.”

Usage:

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 29/65

Scenario​ ​2:

REQ1:​ ​This​ ​project​ ​requires​ ​a​ ​user/password​ ​based​ ​authentication.

REQ2:​ ​Usernames​ ​shall​ ​be​ ​6-10​ ​characters

REQ3:​ ​Passwords​ ​shall​ ​be​ ​8-20​ ​characters

REQ4:​ ​If​ ​correct​ ​user/password​ ​is​ ​entered,​ ​an​ ​auth​ ​token​ ​shall​ ​be​ ​returned​ ​to​ ​the​ ​client.

REQ5: Password patterns (e.g. ‘Password shall contain lowercase and uppercase characters

and​ ​digits’)​ ​shall​ ​be​ ​configurable.

Verdict from project and AC/QC: “The implementing open source component behind the

‘Authentication 1.0’ API is able to handle custom rules as required. The auth/auth core

module has to be extended in order to read the rules from a configuration file, and to

evaluate​ ​and​ ​enforce​ ​them​ ​during​ ​password​ ​modification.​ ​No​ ​new​ ​core​ ​module​ ​is​ ​required.“

Usage:

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 30/65

Scenario​ ​3:

REQ1:​ ​This​ ​project​ ​requires​ ​a​ ​user/password​ ​based​ ​authentication.

REQ2:​ ​Usernames​ ​shall​ ​be​ ​6-10​ ​characters

REQ3:​ ​Passwords​ ​shall​ ​be​ ​8-20​ ​characters

REQ4:​ ​If​ ​correct​ ​user/password​ ​is​ ​entered,​ ​an​ ​auth​ ​token​ ​shall​ ​be​ ​returned​ ​to​ ​the​ ​client.

REQ5: Password patterns (e.g. ‘Password shall contain lowercase and uppercase characters

and​ ​digits’)​ ​shall​ ​be​ ​configurable.

REQ6: As an alternative to REQ1, usage of openID provider and hardware-based

authentication​ ​(Smartcard​ ​or​ ​Bluetooth​ ​token)​ ​shall​ ​be​ ​possible.

Verdict from project: “The open source chosen to implement ‘Authentication v1.0’ is

insufficient. A new core module has to be developed, which is able to collaborate with

openID​ ​provider​ ​systems”.

Verdict​ ​from​ ​AC/QC​ ​and​ ​PPC:​ ​For​ ​future​ ​re-use​ ​add​ ​the​ ​following​ ​requirement

REQ7:​ ​Biometric​ ​authentication​ ​shall​ ​be​ ​possible.

Then​ ​implement​ ​a​ ​prototype.

Table​ ​of​ ​core​ ​modules

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 31/65

Purpose API​ ​doc​ ​link Implementation Comments

Authentication Keycloak 1 Keycloak Implementation
Module​ ​selected​ ​by
SC​ ​&​ ​AC/QC

Authorization Keycloak Keycloak Implementation
Module​ ​selected​ ​by
SC​ ​&​ ​AC/QC

Logging Not​ ​yet​ ​defined Not​ ​yet​ ​defined

Please note that the first core module selected is keycloak for Authentication and

Authorization. The openKONSEQUENZ comittees (SC, AC and QC) have selected keycloak as

an implementation module based on an estimation of the requirements and past

experience using keycloak. The API definition needs to be done in the first implementation

project.

Auth²

Auth² is the core module implementing authentication and authorization protocols.

Keycloak​​ ​(http://www.keycloak.org/)​ ​is​ ​used​ ​as​ ​an​ ​implementation​ ​component.

As a shortcut, Auth² will currently be accessed directly via the Keycloak API. This will be

replaced by ​org.eclipse.openk.auth2​, an oK specific Auth² API shortly. The oK Auth² API will

be an abstraction of the Keycloak API and is put into place due to possible migration and

maintainability.

1 ​Currently, keycloak is not integrated in any module. It shall be used indirectly in a core
module. The first implementation project has to create an abstraction to thi Keycloak API in
order​ ​to​ ​decouple​ ​keycloak​ ​and​ ​be​ ​able​ ​to​ ​switch​ ​the​ ​implementation​ ​in​ ​the​ ​future.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 32/65

Logging

Next​ ​Core​ ​Module…

Domain​ ​API

Eisman

The​ ​Domain​ ​Modules​ ​known​ ​as​ ​“CIM​ ​Cache”

In the following, the three Domain Modules "TopologyDataManagement",

"AssetDataManagement" and "MeasurementDataManagement" will be described. These

domain modules are sometimes summarized under the term "CIM Cache" and have a

central role in the openKONSEQUENZ platform, as these modules hold the integrated data

model for higher level tasks for operating power grids. The CIM-standard-based interfaces

are used to integrate and export data into and from the module. The major purpose of

these CIM cache modules are to provide a shared data repository for faster, more directed

and simplified access to data that is distributed and fragmented over several Source

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 33/65

Systems, that have in some cases low availability (e.g., a GIS might have an availability of

97%,​ ​which​ ​might​ ​be​ ​sufficient​ ​if​ ​it​ ​is​ ​used​ ​only​ ​as​ ​documentation​ ​system).

Especially these domain modules will be subject of regular future extensions, because future

user modules might require data that is not yet in the data model. Such extensions may

modify the interfaces (e.g., by adding attributes and entities) and possibly add new

interfaces. Additionally, the current descriptions are prior to implementation and may

change​ ​during​ ​implementation​ ​and​ ​further​ ​connectional​ ​architectural​ ​discussions.

In a concrete installation, only the interfaces need to be implemented that are required by

the user modules that the DSO wants to use. Furthermore, there might be even more

domain modules that are part of the CIM Cache module group, such as a module for caching

events.

The development and APIs of the CIM Cache domain modules starts by focusing on the

feed-in management use case, which is subject of the first user module and based on plans

for a basic power grid state estimation module (which distributes eclectic power

measurements to lower level elements based on profiles). The feed-in management use

case is a good starting point, because it combines static topology, dynamic topology, asset

management data and current power measurements. These use cases need a data model

that​ ​can​ ​be​ ​used​ ​to​ ​answer​ ​the​ ​following​ ​(here​ ​simplified​ ​and​ ​generalized)​ ​questions:

● Which power generators (e.g., PVs or wind parks) are connected to which power

transformer​ ​under​ ​the​ ​current​ ​switching​ ​state​ ​of​ ​the​ ​power​ ​grid?

● Which​ ​(HV/MV)​ ​power​ ​transformers​ ​are​ ​in​ ​the​ ​power​ ​grid?

● What is the current (i.e., last) active power measurement for a power generator (if

this​ ​power​ ​generator​ ​provides​ ​measurements)?

● What are the measurements by sensors that are installed in the power grid (e.g.,

sensors located at power transformers, near to feeders or at secondary

substations)?

● How are (primary and secondary) substations, power generators, feeders,

consumers,​ ​generators​ ​topologically​ ​related​ ​(i.e.,​ ​electrically​ ​connected)?

The three domain modules cut the CIM Cache into modular parts based on the decision

that:

● different structural types of data (e.g., topology graph, lists of asset data, time series

data)​ ​each​ ​have​ ​its​ ​own​ ​optimal​ ​data​ ​management​ ​strategy,

● to have independently deployable modules, since not every DSO will need all parts

of​ ​the​ ​CIM​ ​Cache,​ ​and

● the CIM Cache is cut into parts depending on the semantic type of data (e.g., static

topology that changes only by grid construction, dynamic topology data such as

switch positions, asset management data of feed-in generators and grid

infrastructure,​ ​and​ ​measurement​ ​data​ ​that​ ​changes​ ​frequently).

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 34/65

However the separation of the CIM Cache in multiple modules still means that the data is

connected​ ​between​ ​the​ ​modules.

TopologyDataManagement​ ​(TDM)

This domain module manages the current topology of power grids. Later, it might also

contain potential and planned (switching state) topologies, but not in the first

implementation steps. This includes logic to build up topology data models from the source

system APIs and logic to provide the data and to answer certain questions (e.g., is a grid

element​ ​electrically​ ​connected​ ​to​ ​a​ ​power​ ​transformer).

The​ ​TDM​ ​includes:

● static topology information with grid infrastructure elements, such as wires,

switches,​ ​transformers​ ​with​ ​some​ ​master​ ​data​ ​​ ​and​ ​their​ ​topological​ ​context

● dynamical topology information, such current switching and (later) tap-changer

switching​ ​state

● current or recent measurement data of grid sensors (e.g., from sensors in

substations)

The​ ​TDM​ ​does​ ​not​ ​include:

● no​ ​complete​ ​master​ ​data​ ​for​ ​assets

● no​ ​measurement​ ​data​ ​history​ ​(i.e.,​ ​it​ ​is​ ​not​ ​an​ ​archive​ ​/​ ​historian)

● no​ ​forecast​ ​data

● no​ ​real​ ​time​ ​measurements

● no​ ​planned​ ​switching

The​ ​TDM​ ​provides​ ​services​ ​for:

● requesting​ ​the​ ​complete​ ​topology​ ​and​ ​for​ ​parts​ ​of​ ​the​ ​topology

● starting​ ​a​ ​complete​ ​rebuild​ ​of​ ​the​ ​topology​ ​data​ ​model

● refreshing​ ​static​ ​topology,​ ​dynamic​ ​topology​ ​or​ ​measurements

● subscribing​ ​to​ ​changes​ ​to​ ​static​ ​and​ ​dynamic​ ​topology

● subscribing​ ​to​ ​changes​ ​of​ ​measurement​ ​values

The interfaces should as far as possible be implemented as standard CIM profile. For certain

tasks, industry standards such as OPC UA/CIM could be more suitable. The data flow for

TopologyDataManagement is shown in the following figure. Currently, data only flows from

source systems to TDM. Later, a data flow from TDM to source systems could be established

after​ ​careful​ ​consideration​ ​of​ ​architectural​ ​consequences​ ​and​ ​additional​ ​approval​ ​of​ ​the​ ​AC.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 35/65

The TopologyDataManagement might use Core Modules in the future for tasks such as

authentication/authorization,​ ​logging,​ ​and​ ​technical​ ​monitoring.

AssetDataManagement​ ​(ADM)

The AssetDataManagement temporally manages a subset of the master data of grid

infrastructure (e.g., transformers) and grid connected devices such as decentralized energy

resources. This master data focuses on major electrical properties and on some

non-electrical properties that are relevant for operational tasks (e.g., contact information

for a decentralized energy resource). This module should not be confused with a general

Asset Management System - this module holds a copy of some of the data in the Asset

Management​ ​System.

The​ ​ADM​ ​has​ ​interfaces​ ​for:

● storing​ ​master​ ​data​ ​of​ ​grid​ ​infrastructure​ ​elements​ ​and​ ​grid​ ​connected​ ​devices

● refreshing​ ​of​ ​the​ ​master​ ​data

● requesting​ ​(total​ ​or​ ​parts)​ ​master​ ​data​ ​of​ ​(all​ ​or​ ​some)​ ​of​ ​the​ ​grid​ ​elements

Any entity (e.g., a transformer or decentralized energy resource) can have a reference to the

topology (via its unique identifier). The data flow for AssetDataManagement is shown in the

following figure. Currently, data only flows from source systems to ADM. Later, a data flow

from ADM to source systems could be established after careful consideration of

architectural​ ​consequences​ ​and​ ​additional​ ​approval​ ​of​ ​the​ ​AC.

The AssetDataManagment might use Core Modules in the future for tasks such as

authentication/authorization,​ ​logging,​ ​and​ ​technical​ ​monitoring.

MeasurementDataManagement

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 36/65

The MeasurementDataManagement stores selected time series data from the power grid

and from consumers and producers that are connected to the grid. It stores measurement

data together with their location in the topology and provides access to this data. It is not an

archive of the complete available measurement data from the OT-Layer (operational

technology​ ​layer,​ ​e.g.,​ ​SCADA​ ​&​ ​DMS).

This Domain Module is not required for the current feed-in management use cases and a

simplified​ ​state​ ​estimation​ ​use​ ​case.​ ​Therefore,​ ​the​ ​APIs​ ​will​ ​be​ ​specified​ ​at​ ​some​ ​time​ ​later.

The​ ​MeasurementDataManagement​ ​has​ ​interfaces​ ​for:

● Creating and initial storing of relevant power system measurement data with its

location​ ​in​ ​the​ ​topology.

● adding​ ​​ ​new​ ​time-value-pairs​ ​to​ ​existing​ ​time​ ​series

● accessing​ ​time​ ​series​ ​in​ ​a​ ​grid​ ​area​ ​or​ ​for​ ​a​ ​certain​ ​grid​ ​element

The data flow for MeasurementDataManagement is shown in the following figure.

Currently, data only flows from source systems to MDM. Later, a data flow from MDM to

source systems could be established after careful consideration of architectural

consequences​ ​and​ ​additional​ ​approval​ ​of​ ​the​ ​AC.

The MeasurementDataManagement might use Core Modules in the future for tasks such as

authentication/authorization,​ ​logging,​ ​and​ ​technical​ ​monitoring.

Domain-Module​​ ​​Dependencies

The figure above shows the dependencies between the described domain-modules ADM,

MDM and TDM. The TDM (blue) consists of two services. The core-service provides static

topological-information about the installed conducting equipment. This information can be

used by the second TDM-service (dynamic Topology), that uses the current switch- and

tap-changer-states, to enable the view on the current electrically connected power grid. The

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 37/65

ADM, MDM and TDM-dynamic Topology can reference equipment, using the unique

identifier​ ​that​ ​is​ ​provided​ ​by​ ​the​ ​TDM-static​ ​Topology-service.

Source-System-APIs

To get data from source systems, such as DMS, GIS, ERP, oK defines source system APIs.

These APIs are developed under the principle of separation of concerns and described using

Swagger.​ ​The​ ​current​ ​status​ ​can​ ​be​ ​found​ ​in​ ​the​ ​ok-API​ ​Documents.

5.2 Level​ ​2

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developers​ ​according​ ​to​ ​Building​ ​Block​ ​View​ ​Level​ ​2:

Document Level 2: Internal components of a module and a logical view have to be

documented​ ​as​ ​component​ ​diagram​ ​and​ ​class​ ​diagram​ ​with​ ​UML:

● Overview​ ​of​ ​components​ ​and​ ​internal​ ​interfaces

● Detail specification of “complex’” (according to QC-Handbooks top 2 categories)

modules​ ​as​ ​UML​ ​component​ ​and​ ​class​ ​diagram

● Detailed​ ​documentation​ ​as​ ​JavaDoc

○ Separation between architecture and quality is needed in order of the use

and​ ​especially​ ​the​ ​maintenance​ ​of​ ​modules

● Database​ ​model​ ​as​ ​entity​ ​relationship​ ​or​ ​UML​ ​class​ ​diagram

● List existing and new Access rights, that are required by module (and how to

create​ ​them).

● Document security relevant system components and implementation specification

(according​ ​to​ ​BDEW​ ​Whitepaper​ ​chapter​ ​2.1.2.1,​ ​if​ ​it​ ​has​ ​to​ ​be​ ​applied).

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 38/65

6.​ ​​ ​​ ​​ ​Runtime​ ​View

Todo​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​chapter​ ​6:

● Show Interaction of building blocks (components) at runtime for exemplary

processes (use cases / scenarios) with bpmn diagrams (for functional processes)

and​ ​sequence/collaboration​ ​UML​ ​diagrams​ ​for​ ​technical​ ​processes.

● Non-trivial processes in the business logic and processes, in which several modules

are​ ​involved,​ ​have​ ​to​ ​be​ ​modeled​ ​as​ ​UML​ ​sequence​ ​or​ ​collaboration​ ​diagram.

○ Several​ ​modules​ ​scenarios:

■ Technical documentation of the processes as sequence diagram,

which​ ​shows​ ​calls​ ​between​ ​user,​ ​modules​ ​and​ ​external​ ​systems.

■ Matching of interfaces of the modules according the functions- or

service​ ​calls​ ​for​ ​quality​ ​assurance

○ Module​ ​intern​ ​scenarios:

■ UML sequence diagram (or collaboration diagram) define

functions-,​ ​communications-​ ​and​ ​data-flows​ ​for​ ​a​ ​scenario

7.​ ​​ ​​ ​​ ​Deployment​ ​View
The module developer must develop system interface mockups

(​https://en.wikipedia.org/wiki/Mock_object​) for the external systems or legacy systems that

the developed module needs data from. These mockups shall be integrated in deployment

stages as early as possible, but must be available and integrated in Quality Assurance

Environment for Sprint Reviews. If there is a demand in the tender also for integration of

real systems, one of the DSOs (specified in tender) has to provide appropriate test systems

for​ ​integration.

There are several deployment environments required for the different participants and

roles. These deployment environments are based on a reference environment where the

reference platform software is preinstalled. Code check, testing and

build/integration/deployment tools (etc.) according to QC Handbook will be made available

on the reference system and therefore be part of the deployment template accessible for

the​ ​developers.

The​ ​different​ ​deployment​ ​environments​ ​are​ ​listed​ ​in​ ​following​ ​table​ ​and​ ​then​ ​detailed:

Environment
Name

Short
description

Logical​ ​order
of

Reference
Environment

Responsibilit
y

Module
developer's

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 39/65

https://en.wikipedia.org/wiki/Mock_object

deployment usage
(Y​ ​=​ ​yes​ ​-
mandatory,
N​ ​=​ ​no,
P​ ​=​ ​possible)

task

Reference
Environment

The​ ​oK
standard
environment
used​ ​as
reference
and​ ​the​ ​oK
overall​ ​test
environment

4 Y oK Support
deploying
their
modules

Develop
Environment

Environment
a​ ​developer
is​ ​using​ ​for
debug​ ​&​ ​test
purposes

1 P Developer Up​ ​to​ ​the
developer

Integration
Environment

Environment
for​ ​checks​ ​of
integration
of​ ​branches

2 P
(recommend
ed)

Developer Up​ ​to​ ​the
developer

QA
Environment

Environment
for​ ​Sprint
Reviews

3 Y oK Deploy
module​ ​&
legacy
system
mocks;
Product
Owner
acceptance

Demo
Environment

Environment
for
demonstrati
on​ ​of​ ​oK​ ​to
“the​ ​world”

5 Y oK Integrator​ ​or
Developer
(decision​ ​of
SC/PPC)

Customer
Environment

DSO
Environment
s​ ​for
integration
in​ ​DSO
system
landscape,
test,​ ​and

6 P
(recommend
ed)

DSO -

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 40/65

production

● Reference Environment - The reference environment is the reference instance for all

other deployment environments and is operated out of an IBM Softlayer Cloud in

Frankfurt​ ​am​ ​Main.

a. The reference system has the latest accepted version of the oK reference

platform​ ​and​ ​the​ ​modules.
b. Updates to the reference system can be made after successful test and

acceptance in a staging environment that is different from the reference

environment.

c. The​ ​reference​ ​system​ ​is​ ​​ ​an​ ​‘on​ ​demand’​ ​system.

d. The creation of a template from the reference system and storage of the

template in the library allows for easy instantiation for the various other

deployment environments -- test, dev, acceptance, … The creation of a

template can be done easily through the cloud management portal

environment:

e. The current configuration of the reference system is based on the experience

from​ ​the​ ​pilot​ ​and​ ​will​ ​be​ ​changed​ ​according​ ​to​ ​the​ ​progressing​ ​needs.

f. This​ ​system​ ​is​ ​owned​ ​by​ ​openKONSEQUENZ

● Quality Assurance Environment - is the acceptance environment for sprint and

module acceptance through the SCRUM product owner and the Lead Buyer. The

module needed data of legacy systems must be available as a mockup. Once

accepted, changes can be deployed into the reference system. The quality assurance

environment can either be ‘permanent’ or ‘on demand’ and is owned by

openKONSEQUENZ. A quality assurance environment can easily be deployed using

the reference system template within the cloud environment. Using the cloud

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 41/65

environment specific adaptations to the hardware requirements (like cores, memory

or​ ​disk)​ ​can​ ​also​ ​be​ ​validated​ ​within​ ​this​ ​environment.

● Integration Environment - is up to the developer but should be near to the quality

assurance environment to ensure the same characteristics. The developer can also

make use of an IaaS platform and template to deploy a template of the openK

reference system. The developer is asked to have his own account to deploy the

reference template within the IaaS platform used by openKONSEQUENZ. To make it

very easy for every application developer and contributor to access a copy of the

reference system for integration test purpose the IBM Softlayer portal allows for

easy​ ​use​ ​of​ ​the​ ​defined​ ​reference​ ​system​ ​templates.

This integration system possibility from the cloud allows the application developer to

run performance tests and adapt the system environment to meet the requirements

and provide guidance to openKONSEQUENZ for system sizing related to the newly

designed​ ​and​ ​developed​ ​application.

● Demo Environment - it is planned to set up a demo environment including existing

modules. This demo environment will be accessible from external (public IP-address)

and is equivalent to the reference system incl. interaction between the modules and

legacy system mocks. The demo system should be a permanent system and is owned

by​ ​openKONSEQUENZ.

The reference environments associations to legacy systems are shown in the following

figure. For quality assurance environment and demo environment, the external data sources

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 42/65

(examples the figure are SCADA, ERP, GIS) are integrated in the oK-Server as system mocks.

● Standard Customer Environment - there is not standardized way, how DSO are

splitting up resources on multiple hardware components (see following image for a

possible​ ​scenario)

It is possible, that the SCADA System has access to the integration server, but not the other

way​ ​around.

The architecture principle is based on a service oriented architecture. The decision was

taken not to adopt a micro services architecture at this point in time. This may become

more relevant in the future when more and more Platform Modules and / or applications

provide​ ​reusable​ ​components.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 43/65

Recommended information for developers according building up an own infrastructure or

using​ ​the​ ​reference​ ​environment​ ​in​ ​an​ ​own​ ​hosted​ ​VM​ ​or​ ​on​ ​the​ ​IaaS

The openKONSEQUENZ reference system is hosted in an IaaS (Infrastructure as a Service)

environment​ ​​ ​with​ ​IBM​ ​Softlayer​ ​Cloud​ ​in​ ​Frankfurt/Main.

Image​ ​templates​ ​of​ ​the​ ​reference​ ​system​ ​will​ ​be​ ​created​ ​and​ ​made​ ​accessible.

Application developers will get access to the reference system templates. A developer can

decide to use an own infrastructure, the .vhd format-templates in a virtual machine or the

IaaS environment. In the latter he can easily deploy these templates for development and or

testing purpose - in the case of using the IaaS environment it is typically in the responsibility

of the application developer to have his own IaaS account and access. It is recommended to

use​ ​at​ ​least​ ​the​ ​template​ ​in​ ​the​ ​integration​ ​environment.

TODO​ ​for​ ​architecture​ ​documentation
By​ ​module​ ​developer​ ​according​ ​to​ ​chapter​ ​7:

● Document​ ​how​ ​the​ ​modules​ ​builded​ ​source​ ​is​ ​deployed​ ​in​ ​the​ ​reference
environment​ ​to​ ​get​ ​the​ ​module​ ​started

● Document​ ​the​ ​external​ ​or​ ​legacy​ ​system​ ​mockups​ ​(name,​ ​which​ ​data,​ ​which
system(s)​ ​the​ ​data​ ​usually​ ​will​ ​come​ ​from,​ ​which​ ​external​ ​interface​ ​is​ ​used​ ​(name,
version),​ ​mockups​ ​git-repository​ ​position).

● Document​ ​requirements​ ​and​ ​assumptions​ ​needed​ ​for​ ​secure​ ​system​ ​operation
according​ ​to​ ​BDEW​ ​Whitepaper​ ​(if​ ​it​ ​has​ ​to​ ​be​ ​applied)​ ​chapter​ ​2.1.2.4

8.​ ​​ ​​ ​​ ​Concepts​ ​and​ ​Non-Functional​ ​Requirements
This chapter describes the general concepts and for this architecture handbook relevant

detailed information - irrelevant subchapters remain to keep consistency according to the

Arc42.

General​ ​concepts​ ​are:

Tiers​ ​(see​ ​also​ ​following​ ​image):

● Client-Side​ ​GUI

● Business logic on application server with interface sub tiers to client, ESB/Business

process engine, and module specific persistency (The business layer (if no

BPMN-process) of an application must be placed in the Java application. This layer

shall explicitly not be only a pass-through layer. It needs to hold its own business

objects​ ​to​ ​get​ ​separation​ ​between​ ​ESB​ ​and​ ​GUI.)

● Business process engine as possible tier between ESB and application server

(Camunda is suggested by openKonsequenz AC for BPM based applications. Current

applications do not yet require a BPM engine. This may change in the future. The AC

is​ ​open​ ​to​ ​discuss​ ​alternative​ ​suggestions​ ​form​ ​application​ ​developers.)

● ESB

● Legacy​ ​systems​ ​adapter

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 44/65

● Legacy​ ​systems

Data-Exchange:

● Modules interact only via ESB and CIM interfaces (web services, REST, XML,

CIM/XML​ ​(RDF))​ ​with​ ​other​ ​oK​ ​modules​ ​or​ ​external​ ​systems.

● Each module must store its own entities in private module-DB(-scheme) (there is no

data​ ​exchange​ ​between​ ​modules​ ​using​ ​the​ ​same​ ​DB​ ​scheme​ ​allowed)

● Communication​ ​between​ ​different​ ​modules​ ​or​ ​legacy​ ​systems​ ​only​ ​via​ ​ESB

● CIM-based​ ​ESB​ ​communication​ ​(IEC​ ​61970​ ​/​ ​IEC​ ​61968​ ​/​ ​IEC​ ​619325)

Vendor-neutrality:

● Use​ ​of​ ​Open​ ​Source​ ​libraries

● Special features of ESB (and other middleware) are not used to prevent

vendor-lock-in

User​ ​Interface:

● ok-GUI-Styleguide​ ​based​ ​on​ ​previous​ ​work​ ​of​ ​Minnemedia​ ​and​ ​openK​ ​pilot

○ oK-Design​ ​of​ ​minnemedia​ ​contains

■ Styleguide,

■ Html-pages

■ Bootstrap​ ​artefacts

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 45/65

■ JS​ ​artefacts

Development/Quality/Test:

● Development​ ​chain​ ​according​ ​to​ ​Quality​ ​Committee​ ​Handbook

In​ ​Future:​ ​Identity​ ​and​ ​Access​ ​Management​ ​(in​ ​development)

In further subchapters, details of the architecture concept are listed or have to be listed and

documented for each individual module. Empty 8.x subtitles are not of importance for AC

handbook​ ​but​ ​may​ ​be​ ​of​ ​importance​ ​for​ ​individual​ ​module​ ​documentation.

8.1 Domain​ ​Models

The interface models of the overall openKONSEQUENZ platform interface and of module

interfaces​ ​shall​ ​be​ ​shown​ ​under​ ​3.3.​ ​External​ ​Interfaces.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.1:

● Domain models for the business logic of modules without relation to technology

have​ ​to​ ​be​ ​documented​ ​at​ ​this​ ​point​ ​by​ ​each​ ​module​ ​developer.

8.2 Recurring​ ​or​ ​Generic​ ​Structures​ ​and​ ​Patterns

Internal​ ​module​ ​architecture

In​ ​the​ ​following,​ ​an​ ​example architecture for the internal architecture of a single oK

Modules is described. This description can be used as template and it is currently ​not

mandatory (ACQC Meeting 2016-08-29). The following UML component diagram

(​https://en.wikipedia.org/wiki/Component_diagram​)​ ​shows​ ​the​ ​proposal​ ​for​ ​an​ ​oK-Module:

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 46/65

https://en.wikipedia.org/wiki/Component_diagram

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 47/65

1​ ​oK-Module

The oK-Module component consists of different components and parts. Some of them have

specific functional requirements and must be implemented especially for the application

purpose. But there are also components and parts, which have common functionality and

features in the oK-context. Some components and parts are not necessary and can be

omitted​ ​.​ ​They​ ​are​ ​optional.

● gray​ ​components​ ​and​ ​parts​ ​are​ ​optional

● blue​ ​components​ ​and​ ​parts​ ​are​ ​candidates​ ​for​ ​a​ ​common​ ​oK-framework​ ​library

2​ ​User​ ​Interface​ ​(optional)

The User Interface is an optional component for modules that interact with users. Usually

the Domain ​Modules have no user interface. The User Interfaces are web-applications, that

are​ ​connected​ ​via​ ​a​ ​REST/JSON​ ​communication​ ​with​ ​the​ ​backend.

3​ ​Module​ ​Core

The entire application logic is provided by the Module Core. It defines the flow control and

manages the interaction of its components and parts to fulfill the functional and technical

requirements.

Business​ ​Logic:

This​ ​part​ ​is​ ​the​ ​heart​ ​of​ ​the​ ​Module​ ​Code.​ ​It​ ​defines​ ​the​ ​functional​ ​requirements.

Data​ ​Model:

This​ ​is​ ​the​ ​application​ ​specific​ ​data​ ​model.

It can be inspired by the CIM standard. But be careful. Usually it is not recommended to use

the CIM-Model as application own data model. It has to be attentively evaluated, if your

performance and software design requirements can be fulfilled. Please also keep in mind

that​ ​you​ ​have​ ​a​ ​potentially​ ​unwanted​ ​dependency​ ​to​ ​CIM.

Cache​ ​(optional):

For performance reasons it is sometimes a good idea to hold often used application data in

the​ ​memory.​ ​The​ ​application​ ​can​ ​use​ ​the​ ​optional​ ​Cache​ ​component​ ​for​ ​this​ ​purpose.

Tracing/Logging:

The Tracing/Logging component records technical and functional events, messages and

errors that occur while the application is running. It can be used to understand or reproduce

malfunctions. It also can be used for archiving purposes and audits. Usually a local-file

and/or​ ​application​ ​console​ ​keeps​ ​the​ ​trace​ ​and​ ​log​ ​records.

To create homogeneous formed log entries and use comparable log levels, it is recommend

to​ ​implement​ ​and​ ​use​ ​a​ ​common​ ​oK​ ​logging​ ​component.

4​ ​Application​ ​Logging​ ​Connector

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 48/65

http://wiki.openk.de/index.php?title=Service_Module&action=edit&redlink=1

The Application Logging Connector provides access to the Application Logging Module of the

oK-platform.

5​ ​Authentication​ ​Connector

The Authentication Module can be used for authentication purposes. This component

provides access to this module. It should be implemented module independent, so it can be

reused​ ​by​ ​other​ ​oK-Modules.

6​ ​Authorization​ ​Connector

The Authorization Connector is similar to the Authentication Connector and provides access

to​ ​the​ ​common​ ​Authorization​ ​Module.

7​ ​Job-Scheduling​ ​Connector​ ​(optional)

Some oK-Modules provides time-dependent processing. With the Job-Scheduling Module it

is possible to control the time-dependant processing of different oK-Modules in the right

chronological sequence. If the current oK-Modules has any time-dependant processing, the

Job-Scheduling​ ​Connector​ ​enables​ ​the​ ​access​ ​to​ ​the​ ​common​ ​Job-Scheduling​ ​Module.

8​ ​Monitoring​ ​Connector

Using the Monitoring Module the system operator gets the accurate status information of

every distributed oK-Module at one glance. To enable this functionality, it is necessary that

every oK-Module provides information about its current state. The Monitoring Connector

provides​ ​the​ ​access​ ​to​ ​the​ ​Monitoring​ ​Module.

9​ ​Settings

Normally oK-Modules have a set of configurable values, that are not changed throughout

the entire module runtime. For example, they enable the integration of a module in

different environments or enable/disable optional module features. The component

Settings provides the current configuration. Since the way to access and store settings can

be reused, it is recommend to implement or use a common component of the

oK-framework​ ​library.

10​ ​Persistence​ ​(optional)

With the optional Persistence component, the oK-Module can persist its data. Usually a

database management system is used for this purpose. But the most suitable storing

method​ ​depends​ ​on​ ​the​ ​specific​ ​needs​ ​and​ ​requirements​ ​of​ ​the​ ​actual​ ​oK-Module.

11​ ​Data​ ​Interchange

The Data Interchange component is used to exchange data and information with other

oK-Modules​ ​or​ ​the​ ​source​ ​systems.

Since the communication with the Module Core is encapsulated in an interface, the Data

Interchange component can be replaced easily. So it is possible to minimize the costs, when

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 49/65

the communication standard or version will be changed. It is also possible to operate

different​ ​communication​ ​standards​ ​or​ ​versions​ ​concurrently.

Interchange​ ​Data​ ​Mapping:

The function of this part is to map the Data Model of the Module Core to the Interchange

Data​ ​Model​ ​and​ ​vice​ ​versa.

Interchange​ ​Data​ ​Model:

The Interchange Data Model is the representation of the data that should be exchanged

with other oK-Modules or the Source Systems. Usually, but not necessarily, this is a

CIM-Data​ ​Model.

It is an indicator for bad software design, if you use the Data Model as Interchange Data

Model.​ ​The​ ​two​ ​models​ ​are​ ​usually​ ​different​ ​and​ ​have​ ​to​ ​be​ ​maintained​ ​independently.

Payload​ ​Generator:

This part creates the functional information, that should be transferred to the receiving

oK-Module​ ​or​ ​Source​ ​System

Message​ ​Generator:

The Message Generator prepares the message for transferring. It enriches the payload with

meta and routing information that enable the messaging middleware to forward the

message​ ​and​ ​help​ ​the​ ​receiver​ ​to​ ​parse​ ​the​ ​payload.

Payload​ ​Validator:

The Payload Validator checks the functional payloads of the incoming messages, if they

meet​ ​the​ ​minimum​ ​defined​ ​requirements.

Message​ ​Parser:

Incoming messages will be analyzed and parsed by the Message Parser. The Message Parser

unpacks​ ​the​ ​payload​ ​of​ ​the​ ​message​ ​and​ ​transfers​ ​it​ ​to​ ​the​ ​Payload​ ​Validator.

12​ ​Communication

The reusable Communication component receives or sends the data, that should be

exchanged with other oK-Modules. It complies and implements the guidelines that are

defined​ ​in​ ​the​ ​Communication​ ​Guideline.

8.3 Persistency

Java Persistence API (JPA) reference implementation EclipseLink with PostgreSQL (without

using special features for each of them to make a potential exchange of database and JPA

easy). In the sharing PostgreSQL each module shall have its own database schema or more

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 50/65

than one. Different modules are not allowed to access the same database schema. The

module name must be used as prefix for the database schema names and for database

users.

8.4 User​ ​Interface

The ok-GUI-styleguide document defines rules and regulations that each module has to

follow, when it provides user interfaces. The GUI-styleguide document is evolving, and will

be extended as required. If the GUI-styleguide does not cover UI concepts needed by a

module, it shall be extended during the module development. The project may suggest an

extension to the GUI-styleguide document, but additions to and changes of the

GUI-styleguide document have to be reviewed, accepted and released by the architecture

committee.

8.5 Ergonomics

See​ ​8.4

8.6 Flow​ ​of​ ​Control

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.7 Transaction​ ​Procession

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.8 Session​ ​Handling

User Session Handling: User login and session management is provided by the portal (Liferay

in case of oK). All modules must use the user session management of the portal to achieve

an uniform experience for the user and to ease integration into DSOs environment. User

session​ ​management​ ​is​ ​standardized​ ​in​ ​JSR​ ​286​ ​portlet​ ​specification.

If a module needs management of technical sessions (e.g. sessions with external systems, or

involving​ ​multiple​ ​services),​ ​these​ ​aspects​ ​have​ ​to​ ​be​ ​described​ ​here.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.8:

● Document​ ​the​ ​technical​ ​sessions​ ​management​ ​(if​ ​needed)

8.9 Security

According to the vision of openKONSEQUENZ (see document oK-vision) the oK-software

must be secure. This chapter will contain the security concept. The concept will define the

implementation of the requirements of the BDEW Whitepaper and will be aligned with its

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 51/65

structure. For the security relevant aspects which are laid down at other locations it will

contain references. With increasing amount and functionality of user modules and Domain

Modules​ ​the​ ​security​ ​concept​ ​will​ ​be​ ​extended.

General​ ​Requirements​ ​and​ ​Housekeeping

Cryptographic​ ​standards

When cryptographic standards are selected, only state-of-the-art cryptographic algorithms

and key lengths according to BSI TR-02102-1 shall be used. ​This is particularly true for the

usage of ​Transport Layer Security (SSL/TLS) in connections with HyperText Transfer Protocol

Secure​ ​(HTTPS)​ ​-​ ​see​ ​BSI​ ​TR-02102-2.

Documentation

A complete security architecture does not only comprise technical means. It also describes

operational guidelines considering the available technical base as well as the personnel

controlling the systems. The Documentation of Security Parameters and Security Log Events

or​ ​Warnings​ ​has​ ​to​ ​be​ ​described​ ​according​ ​to​ ​chapter​ ​5.2,​ ​8.16​ ​and​ ​8.18.

The​ ​end​ ​user​ ​documentation:

● User​ ​documentation

● Administration​ ​documentation

is demanded by the QC handbook and shall include the Requirements and Assumptions

needed​ ​for​ ​Secure​ ​System​ ​Operation.

The​ ​security​ ​concept​ ​is​ ​not​ ​yet​ ​fully​ ​specified.​ ​A​ ​task​ ​of​ ​the​ ​AC​ ​is​ ​to​ ​extend​ ​the​ ​security

concept​ ​according​ ​to​ ​progress​ ​of​ ​development.​ ​Further​ ​subchapters​ ​according​ ​to​ ​security

shall​ ​underlie​ ​the​ ​following​ ​structure:

● Base​ ​System

● Networks​ ​/​ ​Communication

● Application

● Development,​ ​Test​ ​and​ ​Rollout

● Backup,​ ​Recovery​ ​and​ ​Disaster​ ​Recovery

8.10 Safety

According to the mission statement of openKONSEQUENZ the software is located in a

safety-critical environment. Until further notice, the software will not be directly coupled

with or responsible for functions that might endanger human life or equipment.

Safeguarding​ ​life​ ​and​ ​environment​ ​is​ ​not​ ​in​ ​focus​ ​for​ ​the​ ​software.

8.11 Communications​ ​and​ ​Integration

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

The​ ​integration​ ​concept​ ​is​ ​yet​ ​not​ ​considered​ ​to​ ​a​ ​sufficient​ ​extent.​ ​A​ ​task​ ​of​ ​the​ ​AC​ ​is​ ​to
define​ ​a​ ​concept​ ​for​ ​replacement​ ​/​ ​integration​ ​of​ ​modules.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 52/65

8.12 Distribution

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.13 Plausibility​ ​and​ ​Validity​ ​Checks

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.14 Exception/Error​ ​Handling

Exceptions that are part of a modules external interface need to be discussed with the AC

and cleared by it. Each module is responsible for its own error/exception handling as

specified in the list of technologies below. All errors and exceptions shall be logged

according​ ​to​ ​the​ ​logging​ ​requirements​ ​as​ ​specified​ ​in​ ​the​ ​QC​ ​Handbook.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.14:

● Document​ ​which​ ​kind​ ​of​ ​exceptions​ ​and​ ​errors​ ​are​ ​handled​ ​by​ ​the​ ​system

● Document ​Which kinds of errors are forwarded to which external interface and

which​ ​are​ ​handled​ ​fully​ ​internally.

8.15 System​ ​Management​ ​&​ ​Administration

Larger software systems are often executed in controlled environments (data centers) under

oversight of operators or administrators. These stakeholders require specific information on

the applications’ states during runtime as well as special means of control and

configuration. In oK, the development processes are separate Processes. On the one hand,

oK development of prototypes and on the other hand the bilateral system integration at the

DSO. Because of this, the need for a proper implementation at this point is even stronger.

The system administrators need information, where and how ticket management systems

can​ ​get​ ​fault​ ​information.

The​ ​system​ ​management​ ​&​ ​administration​ ​concept​ ​is​ ​yet​ ​not​ ​considered​ ​to​ ​a​ ​sufficient
extent.​ ​A​ ​task​ ​of​ ​the​ ​AC​ ​is​ ​to​ ​specify​ ​a​ ​central​ ​instance​ ​for​ ​getting​ ​tickets​ ​for​ ​administration
of​ ​oK-Platform.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.15:

● Document​ ​where​ ​and​ ​how​ ​a​ ​ticket​ ​management​ ​system​ ​can​ ​get​ ​fault​ ​information.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 53/65

8.16 Logging,​ ​Tracing

There are different kinds of logging. Logging for business aspects, logging for administrators,

logging for developers. It is specified in the tender / by Product Owner, which events must

be​ ​logged​ ​for​ ​business​ ​aspects.

The Logging shall be implemented using the Simple Logging Facade for Java (SLF4J). As

Implementation​ ​for​ ​the​ ​Logging,​ ​for​ ​example​ ​Log4J,​ ​Log4J​ ​2​ ​or​ ​logback​ ​can​ ​be​ ​used.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.16:

● What are expected messages, which meaning does they have and (if necessary)
how​ ​a​ ​module​ ​differs​ ​from​ ​QC-requirements.

● Document security relevant system messages (according to BDEW Whitepaper
chapter​ ​2.1.2.3,​ ​if​ ​it​ ​has​ ​to​ ​be​ ​applied).

8.17 Business​ ​Rules

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.18 Configurability

● Modules have to be configurable in that way, that no rebuild is required to run code

in different environments (see chapter 7. Deployment View for different

environments - in especially different operating systems and distributed servers with

different​ ​access​ ​rights).

● Module specific configuration has to be done in one module-central file. All

configuration parameters shall have meaningful default values. The semantics, value

ranges, and interdependencies of all configuration parameters shall be documented

as​ ​a​ ​part​ ​of​ ​the​ ​modules​ ​architecture​ ​description.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.18:

● Check/develop​ ​module​ ​dependencies​ ​according​ ​to​ ​different​ ​environments

● Document​ ​configuration​ ​files/properties

● Provide​ ​configuration​ ​file​ ​for​ ​quality​ ​assurance​ ​environment

● Document security relevant configuration (according to BDEW Whitepaper

chapter​ ​2.1.2.3,​ ​if​ ​it​ ​has​ ​to​ ​be​ ​applied)

8.19 Parallelization​ ​and​ ​Threading

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 54/65

8.20 Internationalization

By default, all user interface elements shall be internationalized. I.e. all strings, colors,

number/date formats, fonts, … need to be configurable. Each module has to provide a

german​ ​nationalization.

8.21 Migration

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.22 Testability

See QC handbook. Projects should support at least daily build-and-test cycles. Important

keywords​ ​for​ ​this​ ​aspect​ ​are​ ​unit​ ​tests​ ​and​ ​mock​ ​objects.

8.23 Scaling,​ ​Clustering

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.24 High​ ​Availability

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.25 Code​ ​Generation

Intentionally​ ​left​ ​blank​ ​-​ ​not​ ​relevant​ ​at​ ​this​ ​time.

8.26 Build-Management

See​ ​QC​ ​handbook.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​8.26:

● Document, how the overall system is created from its (source code) building

blocks. Document, if directories are in line with the given structure in QC

handbook (Which repositories contain source code, where are configuration files,

test​ ​cases,​ ​test​ ​data​ ​and​ ​build​ ​scripts​ ​maven​ ​stored).

8.27 Offline-Module

Some future modules may have a non-functional requirements to work also offline, that

have to be kept in mind in earlier design decisions for the whole platform. In some cases,

workers in the field may need modules functionality even if their device is offline (from

IT-Network (e.g. there is no active connection to the internet)). Module developers only

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 55/65

need to implement these requirements, if it is explicitly requested in the PPC module call for

tender​ ​/​ ​definition.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 56/65

9.​ ​​ ​​ ​​ ​Design​ ​Decisions
Design and technical decisions are listed in the following chapter. ​Documentation of design

decisions is useful for better understanding of existing architecture and shall avoid

non-observance​ ​of​ ​existing​ ​knowledge.

In case of deviation from the openKONSEQUENZ technical decisions by a module, the

module​ ​developer​ ​has​ ​to​ ​ask​ ​the​ ​ACQC​ ​committee​ ​to​ ​come​ ​to​ ​an​ ​agreement.

1. Platform​ ​Components​ ​for​ ​more​ ​than​ ​one​ ​Module

a. Problem:​ ​Several​ ​Modules​ ​need​ ​the​ ​same​ ​data/information.

b. Constraints: Data/information shall not be saved redundant in every piece of

software.

c. Assumptions:​ ​Interfaces​ ​can​ ​be​ ​developed​ ​for​ ​exchange​ ​of​ ​such​ ​information

d. Alternatives:

i. Central​ ​platform​ ​modules

ii. Distributed​ ​information​ ​in​ ​modules

e. Decision: Central platform modules shall be developed for topology

management.​ ​Also​ ​for​ ​Identity​ ​&​ ​Accessmanagement.

2. Module​ ​communication:​ ​Communication​ ​between​ ​modules​ ​only​ ​via​ ​ESB

a. Problem:​ ​Modules​ ​need​ ​information​ ​from​ ​other​ ​modules

b. Constraints:​ ​If​ ​one​ ​module​ ​changes,​ ​other​ ​modules​ ​shall​ ​not​ ​need​ ​a​ ​change.

c. Assumptions: if modules interact directly via Databases, no module is directly

responsible for the database scheme, schemes can be misunderstood or

misinterpreted​ ​so​ ​inconsistency​ ​in​ ​the​ ​underlying​ ​data​ ​is​ ​supported.

d. Alternatives:​ ​direct​ ​access​ ​to​ ​database,​ ​interface​ ​communication

e. Decision: interface communication via ESB, because of better long term

maintainability (independent Maintenance cycles between modules and

separated​ ​interchangeability​ ​during​ ​operation)

3. No​ ​multitenancy

a. Problem:​ ​Multiple​ ​DSOs​ ​could​ ​use​ ​one​ ​module

b. Constraints:​ ​concurrent​ ​use​ ​of​ ​modules​ ​by​ ​different​ ​DSOs

c. Assumptions:​ ​Every​ ​DSO​ ​has​ ​its​ ​own​ ​application​ ​server​ ​for​ ​hosting​ ​modules.

d. Alternatives:​ ​multitenancy,​ ​no​ ​multitenancy

e. Decision:​ ​No​ ​Multitenancy

4. Portal

a. Problem:​ ​Users​ ​shall​ ​not​ ​need​ ​to​ ​register/login​ ​for​ ​each​ ​oK-module

b. Constraints:

i. Single-Sign-On​ ​or​ ​Workstation​ ​Login

ii.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 57/65

c. Assumptions: Liferay handles User Sessions, Konfiguration & Access Rights

for​ ​Portal-pages.

d. Alternatives:

i. Liferay

ii. oK-self​ ​implementation

e. Decision:

i. Liferay

5. Identity​ ​&​ ​Access​ ​Management

a. Problem: Users shall be differentiated and have different access rights to

modules.

b. Constraints:

i. An​ ​oK-self​ ​implementation​ ​is​ ​very​ ​cost​ ​intensive

ii. Open​ ​source​ ​tools​ ​shall​ ​be​ ​used​ ​and​ ​abstracted​ ​via​ ​an​ ​API

c. Assumptions:

i. Liferay can be used to manage Rights & Roles not only for GUI, but

also​ ​for​ ​backend.

ii. Liferay​ ​can​ ​incorporate​ ​existing​ ​LDAP​ ​or​ ​AD​ ​user​ ​token

iii. Keycloak​ ​can​ ​be​ ​used​ ​to​ ​manage​ ​Rights​ ​&​ ​Roles​ ​in​ ​the​ ​backend

iv. Keycloak​ ​can​ ​incorporate​ ​existing​ ​LDAP​ ​or​ ​AD​ ​user​ ​token.

v. The​ ​use​ ​of​ ​Liferay​ ​may​ ​hinder​ ​replacement​ ​in​ ​later​ ​point​ ​of​ ​time

d. Alternatives:

i. Liferay

ii. Keycloak

iii. Ok-self​ ​implementation

e. Decision:

i. Keycloak must be used for Rights&Role Management to enable Access

& Identity Management with a facade (that needs to be developed to

make​ ​Keycloak​ ​replaceable​ ​in​ ​oK​ ​context)

6. ESB​ ​Talend​ ​vs.​ ​Mule

a. Problem:​ ​Which​ ​ESB​ ​to​ ​choose

b. Constraints:

i. No​ ​vendor​ ​lock​ ​in,​ ​open​ ​source

ii. ESB only transport medium, no higher functions shall be used to

prevent​ ​lock-in.

iii. Choice of ESB applies only for the reference platform - the DSO may

use​ ​others​ ​in​ ​their​ ​production​ ​environment.

iv. Exchangeability​ ​must​ ​be​ ​ensured

c. Assumptions:

i. Open source ESB prevents vendor-lock-in and can be developed

further,​ ​Talend​ ​can​ ​be​ ​used​ ​in​ ​long​ ​term.

ii.

d. Alternatives:​ ​(By​ ​previously​ ​study)​ ​Talend,​ ​Mule

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 58/65

e. Decision:​ ​Talend​ ​(got​ ​feedback​ ​on​ ​request)

7. ESB​ ​CIM/REST​ ​Interfaces

a. Problem:​ ​A​ ​founded​ ​way​ ​to​ ​describe​ ​DSOs​ ​data​ ​is​ ​needed

b. Constraints:​ ​Standardized​ ​Base,

c. Assumptions: RESTful Webservices can be used according to CIM Standards,

REST​ ​is​ ​easier​ ​to​ ​integrate​ ​than​ ​Soap

d. Alternatives:​ ​CIM​ ​in​ ​different​ ​Versions,​ ​RESTful,​ ​Soap

e. Decision:​ ​CIM​ ​Version​ ​17​ ​or​ ​newer,​ ​REST

8. BPMN​ ​Camunda​ ​(not​ ​explicitely​ ​specified)

a. Problem:​ ​Process​ ​Engine

b. Constraints:

c. Assumptions:

d. Alternatives:

e. Decision: Camunda (It is suggested to use Camunda for business processes. If

a​ ​software​ ​developer​ ​names​ ​an​ ​alternative,​ ​the​ ​AC​ ​will​ ​discuss​ ​this.)

9. Business​ ​reporting

a. Problem: some Modules need to create human readable reports of business

purposes

b. Constraints:

c. Assumptions:

d. Alternatives:​ ​JasperReports​ ​Library,​ ​BIRT,​ ​Crystal​ ​Reports

e. Decision: As Crystal Reports is closed source software, JasperReports Library

or​ ​BIRT​ ​shall​ ​be​ ​used​ ​for​ ​generation​ ​of​ ​business​ ​reports.

An inspection of licence compatibility to EPL of the listed report tools through eclipse

is not done yet and needs to be triggered (possibly, by the first module utilizing

reports).

10. Code-/Design-/Quality​ ​reports​ ​as​ ​.ad

a. Problem: In which format shall reports for Code, design and quality be stored

(and​ ​where)

b. Constraints: Easy access (open community) - technologically and according

storage

c. Assumptions: git is used as repository for code. Ascii-Documents can be

opened​ ​by​ ​everyone​ ​and​ ​easily​ ​be​ ​managed​ ​in​ ​git​ ​(version​ ​history,​ ​merge)

d. Alternatives:​ ​Wiki,​ ​git,​ ​word,​ ​tex,​ ​pdf,​ ​.ad

e. Decision:​ ​Ascii-Documents​ ​in​ ​git.

11. Name​ ​-​ ​Spaceholder

a. Problem:

b. Constraints:

c. Assumptions:

d. Alternatives:

e. Decision

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 59/65

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​9:

● Each module has to describe its specific design decisions according to the

following​ ​structure​ ​in​ ​its​ ​own​ ​architecture​ ​document:

1. Name​ ​of​ ​decision​ ​1

a. Problem:

b. Constraints:

c. Reason​ ​for​ ​module​ ​specific​ ​and​ ​not​ ​global​ ​decision

d. Assumptions:

e. Alternatives:

f. Decision:

2. Name​ ​of​ ​decision​ ​2

a. Problem:

b. Constraints:

c. Reason​ ​for​ ​module​ ​specific​ ​and​ ​not​ ​global​ ​decision

d. Assumptions:

e. Alternatives:

f. Decision:

3. ...

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 60/65

10.​ ​Quality​ ​Scenarios
For quality KPIs and quality assurance we refer to the quality committee handbook, in which

(in parts) formalized QA for continued tests is stated necessary. It gives a minimal set of test

and​ ​acceptance​ ​rules​ ​and​ ​KPIs​ ​for​ ​unit​ ​tests.

The​ ​quality​ ​scenarios​ ​for​ ​the​ ​oK​ ​software​ ​are​ ​not​ ​yet​ ​considered​ ​to​ ​a​ ​sufficient​ ​extent.​ ​A
task​ ​of​ ​the​ ​AC​ ​is​ ​to​ ​define​ ​hard​ ​specific​ ​requirements​ ​for​ ​the​ ​oK​ ​software,​ ​for​ ​the​ ​reference
platform​ ​and​ ​quality​ ​scenarios​ ​for​ ​testing​ ​these​ ​requirements.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​10:

● Each module has to describe its own quality requirements in quality (evaluation)

scenarios​ ​and​ ​quality​ ​tree​ ​for​ ​sprint​ ​and​ ​final​ ​acceptance

● Test scripts and test handbooks for acceptance of sprints/releases have to be

documented.

● Test datasets (on base of oK common test data - if it exists); have to be generated,

published,​ ​coordinated​ ​with​ ​ACQC​ ​and​ ​used.

● According to the SCRUM Development process, when defining quality

requirements it is also necessary to define acceptance criteria (the developer shall

remind​ ​the​ ​product​ ​owner​ ​to​ ​discuss​ ​it​ ​in​ ​sprint​ ​planning).

● ​Commisioning​ ​Tests

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 61/65

11.​ ​​ ​Technical​ ​Risks
The​ ​technical​ ​risks​ ​for​ ​the​ ​platform​ ​are​ ​not​ ​yet​ ​considered​ ​to​ ​a​ ​sufficient​ ​extent.​ ​A​ ​task​ ​of
the​ ​AC​ ​is​ ​to​ ​collect​ ​and​ ​assess​ ​risks​ ​for​ ​the​ ​reference​ ​platforms​ ​architecture.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​11:

● Document the list of identified technical risks (with probability of occurrence,

amount of damage, options for risk avoidance or risk mitigation), ordered by

priority

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 62/65

12.​ ​​ ​Glossary

Short Long​ ​(engl) German Description

AC Architecture

Committee

Architekturkomitee Gives Framework

and Constraints

according

architecture for oK

projects

AC​ ​handbook Architecture

Committee

handbook

Handbuch des
Architekturkommite
es

Textural guideline
for module
developers of
openKONSEQUENZ
modules according
to architecture
related issues (this
document).

ACQC Architecture

Committee and

Quality​ ​Committee

Architekturkomitee

und

Qualitätskommite

AC​ ​and​ ​QC​ ​together

 Core​ ​Module Core​ ​Module An oK module that

provides cross

cutting services that

are not special to

the energy domain

but providing

services for multiple

user modules or

domain modules

(see chapter

“Solution Strategy;

oK Multilayer

Architecture”).

 User​ ​Module Fachliches​ ​Modul An oK-application, a

user from a DSO

uses for solving

his/her​ ​use​ ​case.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 63/65

DSO Distribution System

Operator

Verteilnetzbetreiber

(VNB)

Manages​ ​the
distribution​ ​network
for​ ​energy,​ ​gas​ ​or
water

ESB Enterprise Service

Bus

 Central​ ​instance​ ​for
exchange​ ​of​ ​data​ ​to
overcome
point-to-point
connections

IaaS Infrastructure as a

Service

 Cloud​ ​Service​ ​for
hosting.

IP Intellectual​ ​Property Geistiges​ ​Eigentum Protections​ ​for
copyright,​ ​patents,..

 Domain​ ​Module Domain​ ​Modul An oK module that

provides domain

specific services for

multiple user

modules (see

chapter solution

strategy; oK

Multilayer

Architecture)

oK openKONSEQUENZ openKONSEQUENZ Name of the
consortium​ ​of​ ​DSOs

QA Quality​ ​Assurance Qualitätskontrolle Check, if solutions
fulfilling
requirements to
quality

QC Quality​ ​Committee Qualitätskomitee Gives​ ​framework
and​ ​constraints
according​ ​to​ ​quality
for​ ​oK​ ​projects

QC​ ​handbook Quality Committee

handbook

Handbuch​ ​des
Qualitätskommitees

Textural​ ​guideline
for​ ​module
developers​ ​of
openKONSEQUENZ
modules​ ​according
to​ ​quality​ ​related
issues.

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 64/65

SCADA Supervisory Control

and​ ​Data​ ​Acquisition

Netzleitsystem System,​ ​that​ ​allows
DSOs​ ​view/control
actual​ ​parameters
of​ ​their​ ​power​ ​grid.

VPN Virtual Private

Network

Virtual​ ​Private
Network

Extends​ ​private
networks​ ​across​ ​a
public​ ​network.

TODO​ ​for​ ​architecture​ ​documentation

by​ ​module​ ​developer​ ​according​ ​to​ ​Chap.​ ​12:

● Document​ ​important​ ​or​ ​misleading​ ​abbreviations​ ​and​ ​terms

openKONSEQUENZ​ ​Architecture​ ​Committee​ ​Handbook 65/65

