V

open KONSEQUENZ

Quality Committee Handbook

openKONSEQUENZ

created by

Quality Committee

Revision History

Version

Date

Reviser

Description

Status

1.0

2016-06-20

M. Jung

Alignment in AC/QC conference call

Released

1.0.11

2016-08-12

M. Jung

Removed UML tool discussion,

added UML tool decision in design
documentation,

Added configuration documentation,
Removed stale “Related docs” appendix
Removed “Meeting structure” appendix
(structure already implemented).
Added details for commit rules, library
usage, and GUI styleguide application.

Draft for
vl.l

11

2016-08-18

A. Goering

Alignment in AC/QC conference call

Released

111

2017-09-11

A. Goering

Added detailed package naming,
cleaned up.

Released

Formal

According to a decision of the Quality Committee, this document is written in english.

Document control:

Author: Dr. Martin Jung, martin.jung@develop-group.de (representative of the quality

committee)
Reviewed by: SC, PPC, and AC of openKONSEQUENZ
Released by: QC
This document is licensed under the Eclipse Public License Version 1.0 ("EPL")

Released versions will be made available via the openKONSEQUENZ web site.

openKONSEQUENZ Quality Committee Handbook

2/25

mailto:martin.jung@develop-group.de

Related documents

Document Description

BDEW Whitepaper |Whitepaper on requirements for secure control and
telecommunication systems by the german BDEW Bundesverband
der Energie und Wasserwirtschaft e.V.
(https://www.bdew.de/internet.nsf/id/232E01B4E0C52139C1257A5
D00429968/Sfile/OE-BDEW-Whitepaper_Secure_Systems%20V1.1%2
02015.pdf)

BSI-Standard-100-2 | The IT-Grundschutz Methodology is a BSI methodology for effecitve
management of the information securiy for adaption to the situation
of a specific organization.
(https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publicatio
ns/BSIStandards/standard_100-2_e_pdf)

oK-Charter The openKONSEQUENZ charter
(https://wiki.eclipse.org/images/f/f5/20150623a_openKonsequenz_V
14-3_%283%29.pdf)

oK-GUI-Styleguide |Style guide for module developers of openKONSEQUENZ modules
according to the graphical user interface.
(http://wiki.openkonsequenz.de)

oK-Interface-Overv | AC handbook external but related AC document (appendix), where
iew the Interfaces and the overall oK-CIM-Profile of oK-Modules are
described in short as well as showing the Building Block View Level 1.
(https://wiki.eclipse.org/OpenKONSEQUENZACQCRiIchtlinien)

oK-Module-Tender | The openKONSEQUENZ project planning committee prepares a

-Call document which describes the requirements to the development for
each module. With this document it calls for tenders at software
developers

(module individual)

oK-Module-Tender | The software developers answer to the oK-Module-Tender-Call
(module & developer individual)

oK-Vision The oK document “Vision/Mission/Roadmap” - it is currently not
available online.

oK-Website The website of openKONSEQUENZ
(www.openkonsequenz.de)

openKONSEQUENZ Quality Committee Handbook 3/25

https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/BSIStandards/standard_100-2_e_pdf

Architecture
Committee
Handbook

Textural guideline for module developers of openKONSEQUENZ
modules with respect to architectural design & documentation.
(https://wiki.eclipse.org/OpenKONSEQUENZACQCRichtlinien)

The Architecture Committee Handbook also contains the glossary of terms!

openKONSEQUENZ Quality Committee Handbook

4/25

=

g

Jw

4.

Table of Contents

Introduction

1.1 Mission of QC
1.2 Responsibility of QC

1.3 Competence of QC

1.4 Ownership of documents

Project/Module Classification and Review

2.1 Project and module Classification
Criticality
Complexity

2.2 Review method

Quality Rules and Guidelines

3.1 Code quality
File system conventions

Coding guidelines
Unit tests
Configuration management

Build, package & test

Diagnosis, Exceptions and Errors

3.2 Design quality
Design Documentation

Statement of Qualities

Verification
Design Reviews

Document list
3.3 Product quality

Automation in development

Continuous Integration

Continuous Deployment
Validation
Document list

Development Setup

4.1 Environments
Development Environment

Integration Environment

Quality Assurance Environment

4.2 Development Tools

openKONSEQUENZ Quality Committee Handbook

5/25

Appendix
Project directory layout

Coding Guidelines

Naming Convention for artifacts

Common Java artifacts
CIM Versions

CIM Profiles

oK Service Artifacts

oK Core Modules

oK User Modules

oK Source System

openKONSEQUENZ Quality Committee Handbook 6/25

1. Introduction

This document characterizes the role of the quality committee (QC) in openKONSEQUENZ. It
defines quality criteria for the projects to be developed in the context of
openKONSEQUENZ. While QC acts as a control authority, the Architecture Committee (AC)
creates and maintains the overall software architecture, and gives rules for the creation,
documentation and implementation of architecture in the various projects. The rules for
architecture are described in the oK-AC-Handbook (in the following: AC-Handbook).

1.1 Mission of QC

The mission of the quality committee (QC) is to define, maintain, and enforce the guidelines
for development in the openKONSEQUENZ group.

The QC defines the quality standards for project work (process quality) and project outcome
(product quality). It provides procedure and methods for projects to use, and selects tools to
be used (e.g. for documentation).

The QC also defines the integration- and QA-environment (see chapter Il below).

The QC also monitors and evaluates projects and gives feedback to the projects and to the
AC, the project planning committee (PPC), and the steering committee (SC). The QC
supports the other committees in their work.

1.2 Responsibility of QC

The quality of the software code base in openKONSEQUENTZ is ultimately the responsibility
of the QC. The AC will focus on the construction of the software and on enabling the quality
goals; their check and control are responsibility of the QC. Providing infrastructure for
continuous tracking and reporting of the quality indicators during project work is also
responsibility of the QC. If projects experience difficulties when applying the quality rules
and regulations, it is the QCs job to support the projects and to help find a viable solution
for their work. Finally, the QC is responsible to analyze project outcome, and to give
technically sound recommendation to the PPC and SC whether to accept or to refuse a
project outcome.

1.3 Competence of QC

The QC may reject a project outcome based on quality analysis. If either the source code
itself, the software running on the QA environment, the documentation, or any other
mandatory project result does not meet the quality requirements, the QC will advise the SC
and the PPC to reject the project’s outcome and to plan re-work. Such an advisory shall be

openKONSEQUENZ Quality Committee Handbook 7/25

made in writing and published via the openKONSEQUENZ mailing list. The advisory may be
challenged by the project and decision will then be escalated to the SC.

Whenever project proposals are prepared, the QC may alter the description of the project
scope to include key quality requirements and the core quality rules, before a public call for
proposal. Least of all, the QC will ensure that this document is a part of any official project
proposal. Furthermore, the QC will alter the PPC’s description of a project only, if specific
quality aspects are especially important or have a high impact on the project scope.

1.4 Ownership of documents

To define the quality rules and to enforce them, the QC creates, maintains and releases
documents, and defines the development environment.
The list of documents are:

e This document “openKONSEQUENZ: Quality Committee Handbook”

e A directory of coding guidelines (currently co-located in this document, see Appendix

B)
e A list of acceptance criteria for project outcomes (to be defined)
e Arepository containing standardized test data (to be initialized)

The build infrastructure, its technical specification, and a HOWTO for its usage are also
owned by the QC.

openKONSEQUENZ Quality Committee Handbook 8/25

2. Project/Module Classification and Review

The following sections describe, how modules and projects are classificated due to their
criticality and complexity and which review method applies according to the classification.

2.1 Project and module Classification

The project and its modules shall be classified using the following rules:

e Complexity on a scale of Small, Medium, Large

e Criticality on a scale of Normal, High, Very High
Criticality
This document classifies criticality as a vector in three dimensions, availability,
confidentiality, and integrity. The Criticality values are related to the definitions in the
International Standard ISO/IEC 27000. Whenever one dimensions is classified “high”, the
project’s criticality is considered to be “high”, and whenever one dimensions is classified
“very high”, the projects’s criticality is considered to be “very high”. The classification

should be done according to the approach of Determining the protection requirements,
described in the BSI-Standard 100-2.

Complexity

Complexity is related to the size of a module, and can be coupled to typical sizing like story
points or (in this case) Person Days (PD).

2.2 Review method

The overall classification shall be documented in each project proposal. It is required to
determine the review methods as stated in the table below:

Complexity / Small Medium Large

Criticality (< 120 PD) (120 - 240 PD) (>240 PD)

Normal No manual review Peer Review Peer Review
required

High Peer Review Peer Review Walkthrough

Very High Peer review Walkthrough Deep inspection

The review methods apply to documentation, code, test specifications, and test protocols.
“No manual review” means automated checks on the code are sufficient. “Peer review”
means an offline check by AC or QC representatives. A representative is nominated by the
committees and is not necessarily a member; e.g. he/she may be another committer or

openKONSEQUENZ Quality Committee Handbook 9/25

developer, preferably from an other project. “Walkthrough” means an online check by an
AC or QC representative, the author explains the solution. “Deep inspection” means an
online check by an AC member and a QC member, the author and the project lead explain
the solution. The author is responsible to organize the review.

3 Quality Rules and Guidelines

The following sections define the quality requirements on development in the
openKONSEQUENZ group.

3.1 Code quality

File system conventions

Uniform appearance of the project directory structure and consistent naming of files are
mandatory in collaborative work.
e The standard maven project directory structure’ shall be used.
e The project shall provide AsciiDoc files for all documentation purposes. The files are
enumerated below, see appendix A “Project Directory Layout”.

Coding guidelines

Uniform appearance of source code, the readability, and the avoidance of error-prone
statements are key to good code quality.

e The coding guidelines shall be adhered to. See appendix B “Coding Guidelines”
below.

e Functions/Methods shall be documented using Javadoc, JSDoc, Doxygen, or
equivalent source code markup systems.

The coding guidelines selected for openKONSEQUENZ will be implemented by rulesets of
software tools (e.g. PMD, Checkstyle, FindBugs). They will then be enforced by the
continuous integration procedure. The ruleset will be made available via the
openKONSEQUENZ wiki or a source code repository.

Commit rules

To guarantee a up-to-date view on the codebase, and to allow all developers to use
functionality as soon as possible, it is important to commit early and often. Functionality
that is presented in a Sprint Review Meeting has to be pushed to the repository before the
Sprint Review Meeting. Smaller sets of functionality (e.g. an interface without
implementation, an abstract class, etc.) should be pushed as soon as they are testable. To
guarantee a continuous flow of development result, a push is required every two weeks
(mid-sprint push & sprint review push).

! https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

openKONSEQUENZ Quality Committee Handbook 10/25

Unit tests

Unit-testing is a standardized method to assure quality on source-code level.
Unit tests shall be written and cover 100% statements and 80% branches.
At least one unit test case shall be written for each use case (or user story).
Unit tests may use their own, individual test data. If possible, they shall use
standardized test data, in order to avoid “wrong” data.
e All unit tests shall be executed in the daily build of the integration environment.
e Coverage metrics shall be reported on a daily basis via the integration environment.

Configuration management

The configuration (Versions of different components, of external libraries, of configuration
files) shall be described in the maven POM files.

e All code, configuration files, data, and documents shall reside in openKONSEQUENZ’
git repositories.

e Dependencies among components of the openKONSEQUENZ software and to/from
external software components shall be explicit. This shall be achieved by maintaining
maven pom.xml files. No local libraries (implicit dependencies) are permitted.

To freeze versions for test and release, the versioning numbers shall conform to the pattern
X.Y.Z.A, where:

e X: Major Release, incremented on major changes like interface definitions or
end-user visible functionality

e Y: Minor Release, incremented on each delivery. Stable versions have even numbers,
developer versions are odd numbers

e 7:developer tag, incremented on each code change

e A: Git-Hash, git-commit reference for easier handling

During development, feature branches shall be used, the name of the feature is added as
part of the version string like this: X.Y.featurename.Z.A

All check-ins need to be commented. The comments shall be plain text and shall contain the
following information:

Topic (max. 50 characters)
Task reference (to backlog item, requirement, defect, ...; always using the ID of the
task)

e Reason: Why was this change necessary?

e Rationale: What has been done (on an abstract level)?

e Side effects: What else did change?

Build, package & test

Since the software shall be widely accessible, an automatic method to build, package and
test it is required. The maven tool will be used to control these tasks.

openKONSEQUENZ Quality Committee Handbook 11/25

e The maven files shall encompass functionality to build the software, create runnable
packages, run the unit-tests, and create all documentation files.

Diagnosis, Exceptions and Errors

Each module shall offer interfaces to access diagnosis information such as operational state,
errors or exceptions. All errors and exceptions shall be logged to a plain text file. The format
of log messages shall comply to the following rules:
- Exactly one line of text for each incident
- Each line shall start with a timestamp, a module designation, a thread ID in a comma
separated line header: “YYYY-MM-DD_HH:SS:ssss, moduleXYZ, TID4711823, ...”
- Other information relevant for the module may follow in a comma separated list
- Other information may contain json formatted object information. It is mandatory
that json text is in one line and is correctly enclosed in curly braces
- If human readable text is part of the log messages, english language shall be used.
- Personalized Data and credential information must not be written to log files.

3.2 Design quality

Design Documentation

All projects shall document their technical solution concept. The design documentation has
to conform to the architectural guidance specified by the AC-handbook. Technical decisions
shall be explained, their alternatives and consequences of the decision documented. UML
description shall be used as appropriate, according to the tooling decision, see Architecture
Committee Handbook, section 2.1.

All libraries used by a project have to be listed in the design document, together with a
rationale for their usage. Libraries that are already cleared are default, they have to be used
unless there are valid reasons against their usage (a list of cleared libraries can be obtained
from the eclipse foundation). If a project chooses to override this default, it needs approval
of the architecture committee to do so. In that case the project is responsible to do the IP
clearing. The clearing has to satisfy the publication license of openKONSEQUENZ. The
clearing of the library has to be done as early and as fast as possible. If a clearing fails, the
library must not be used, all development effort based on such a library is wasted.

Statement of Qualities

Each project shall document its quality requirements in the project’s architecture
documentation (according to the AC handbook). Typically, not all quality attributes are
relevant for a project or module. The quality dimensions as defined in ISO 25010 are a frame
of reference. Whenever a quality is of special concern to the project, the impact on the
solution has to be documented. The AC refines system requirements down to project or
module requirements. For example, if a persistence module impacts the overall availability
of the system, the AC breaks down the overall system availability requirements to this

openKONSEQUENZ Quality Committee Handbook 12/25

module. The module has to document these requirements, and has to state how they are
implemented, verified and validated (see next sections).

Verification

One of the aspects of verification are the static analysis of source code and the design and
code reviews. These need to be performed according the review method matrix, see table
“Review Method” above.

The other aspects are tests. Unit tests are required to check basic code functionality, and to
maintain code quality. Design tests check the technical solution against the functional and
quality requirements.

e Module test specifications shall be defined for each module. Using black box test
specifications, the test specification specifies how the requirements and quality
attributes are checked.

e Acceptance criteria shall be defined for the module test specification.

e The test data required to run the module tests shall be specified, with respect to the
global data model and the global test data set.

e Mock functionality (https://en.wikipedia.org/wiki/Mock_object), required for the
execution of the module test, shall be specified.

e Test specifications, test data, and mock functionality shall be formalized in test code
that can be run automatically. This might not be possible for all test specifications.
Manual test have to specified as a working recipe for a tester.

Design Reviews

Design Reviews shall be carried out according criticality and complexity rating and the
resulting review method. Review records shall be stored in the filesystem according to
Chapter V “Project directory layout”.

Document list

® Project architecture concept. Contains the mapping to overall architecture and the
break-down into modules. Also, it contains the rationale for technical decisions and
alternatives, the statement on qualities and the criticality/complexity rating. This
document shall conform to the guidelines by the AC.
e How-to information for developers and integrators. Contains information on
building, running, coding, and testing in this project
® Review records. Contains a list of participants, findings, and resolutions
e Test specifications for module integration test. Contains the strategy for integrating
this projects modules, and a concept to test the integration.
e Test protocols. Contain the test setup used and a verdict. If appropriate, execution
logs are also included.
e For each module:
o Design concept. Contains technical solution concept and coding instructions
o Review records. Contains a list of participants, findings, and resolutions

openKONSEQUENZ Quality Committee Handbook 13/25

https://en.wikipedia.org/wiki/Mock_object

o Test specifications for module test. Contains the concept of testing,
automated and manual parts

o Test protocols. Contain the test setup used and a verdict. If appropriate,
execution logs are also included.

3.3 Product quality

Automation in development

In order to maintain a high overall product quality, a high degree of automation is a key to
handling this job efficient. Automation refers to the following steps:

e Immediate Verification of coding results: This is typically implemented in the IDEs
running automated unit test code and static analyzers on the source code. If all tests
on this level are passed, the software gets forwarded to the next stage.

e Continuous Integration: All development results are transferred to a dedicated build
and test environment. On a daily basis, the development results are compiled, unit
tests, integration tests and overall software tests are run automatically. Metrics and
other analysis reports are gathered and provided as a feedback to the developers. If
all tests on this level are passed, the software gets forwarded to the next stage.

e Continuous Deployment: All development results are transferred to a “QA stage”, a
computing environment as close to the final production environment as possible.
The installation of the software in the QA stage is automated and triggered by
successful integration builds. The software tests are run again, and additional
(typically: manual) test steps are performed.

e Continuous Delivery: If the quality assurance on the QA stage has run successfully,
the software is automatically distributed to end-users.

The goal of this automation is to erase as much manual effort of testing as possible. Tests,
refactorings, integration of additional functional, all will be rather painless, because the
robust testing environment protects the existing functionality.

openKONSEQUENZ will employ the first three steps, unit testing, continuous integration and
continuous deployment.

Continuous Integration

Projects shall create test specifications which are run during continuous integration. The
test cases shall determine, whether the integrated software’s basic functionality is correct.
The continuous integration environment will calculate metrics, perform static and dynamic
analysis, and will generate a feedback website showing the results of the tests and the
metrics.

Continuous Deployment

After successful run of the continuous integration tests, the software build can
automatically be forwarded to the QA environment. While continuous integration runs at
least once per day, QA testing after deployment runs at least once per sprint.

openKONSEQUENZ Quality Committee Handbook 14/25

Projects shall create test specifications for software/system test on the QA stage. This
includes automated tests, automated Ul-Tests, and descriptions for manual test steps.

Validation

Validation - the check whether or not the project delivered software like the PPC
envisioned, and like the users require it - is performed on the QA environment. This means,
that representatives from PPC or end users perform the validation. Projects shall create a
validation specification that states, for each use case, the scenarios a end user should
execute in order to validate the system behavior. Minimum required validation is a 3
months test operation on the QA environment. Additional validation measures shall be
documented in the Validation concept.

Validation will also determine whether or not the project's outcome satisfies all regulations,
e.g. the GUI-styleguide (see also the Architecture Committee Handbook, section 8.4, for
usage of the styleguide document).

Document list

e Project test specification. Contains the strategy for testing the complete project
outcome. This document also contains the description of manual tests. If the
mock-up specifications (see 3., sect. “Verification”) do not cover all aspects needed
for validation purposes, they have to be supplemented here.

e Validation concept. This documents contains a description of all manual tests to be
executed by an end user in order to validate project outcome.

e The project shall deliver a “User documentation” (according to App. A, [3] “BDEW
Whitepaper”, sect. 2.1.2.2)

e The project shall deliver a “Administration documentation” (according to App. A, [3]
“BDEW Whitepaper”, sect. 2.1.2.2)

openKONSEQUENZ Quality Committee Handbook 15/25

4. Development Setup

4.1 Environments

Development Environment

The environment for development is not regulated. It is recommended, that development
environments use syntax checkers and static analyzers (e.g. PMD, Checkstykle, JSLint, ...),
but it is neither prescribed nor will it be checked. Development Environments shall use and
run the Unit Test frameworks. Development Environments shall use git and Maven.

Integration Environment

The integration environment uses git and Maven to access the code and to
build/test/deploy the software. It runs gerrit as a tool for reviews, Hudson as a continuous
integration platform, SonarQube for metrics, and Nexus for software distribution. The
integration environment also runs the Bugtracker (Bugzilla).

Quality Assurance Environment

The Quality Assurance (QA) environment uses the Nexus of the Integration Environment to
get access the software. It uses Maven to run the automated software tests. Other than this,
the QA Environment is similar to the production environments.

4.2 Development Tools

This section lists a set of development tools approved for use. The actual use of tools in a
project is highly dependent on the technology of the project. Tools can be added in
agreement with the AC.
Build automation

® Maven: https://maven.apache.org/

Source code management
e Git: https://git-scm.com/

Source code conventions and static analysis

Used for source code checks on development and integration environment.
PMD: https://pmd.github.io/

Checkstyle: http://checkstyle.sourceforge.net/

°
e Findbugs: http://findbugs.sourceforge.net/
e JSLint: http://www.jslint.com/

Automated code review tracking

e Gerrit: https://www.gerritcodereview.com/
Issue tracking

e Bugzilla: https://www.bugzilla.org/

openKONSEQUENZ Quality Committee Handbook 16/25

http://checkstyle.sourceforge.net/
http://www.jslint.com/
http://findbugs.sourceforge.net/
https://www.bugzilla.org/
https://www.gerritcodereview.com/
https://maven.apache.org/
https://git-scm.com/
https://pmd.github.io/

Continuous integration
e Hudson: http://hudson-ci.org/
Source code and test coverage analysis
e SonarQube: http://www.sonarqube.org/
Software distribution and dependency management
e Nexus: http://www.sonatype.com/download-oss-sonatype

openKONSEQUENZ Quality Committee Handbook

17/25

http://hudson-ci.org/
http://www.sonarqube.org/
http://www.sonatype.com/download-oss-sonatype

Appendix

A. Project directory layout

The following directory structure and file name conventions shall be used (*.adoc are
asciidoc files). The files mentioned explicitly contain the documentation according to
chapter Il “Quality Rules and Guidelines”. Other files (e.g. code and parameter files) shall be
stored according to the maven standard directory layout.

/get_started.adoc (how to get started with the project, where to look, what to do)
/howto/build.adoc (how to build the software)

/howto/run.adoc (how to run a demo or the application)

/howto/code.adoc (how to set up for coding)

/howto/test.adoc (how to set up and execute tests)

/howto/config.adoc (how to set config parameters, semantics of parameters)
/documentation/user.adoc (user documentation according to 4. Product Quality)
/documentation/admin.adoc (admin documentation according to 4. Product Quality)
/arch/architecture.adoc (architecture concept and mapping to overall architecture)
/arch/model/* (UML tool files)

/arch/images/*.png (UML diagram exports and other image files)

/configuration/* (config files, esp. A configuration file for QA-environment)
/reviews/YYYYMMDD-scope-type-author.adoc (review records)

(e.g. 20160429-ControllerComponent-Peer-ScroogeMcDuck.adoc)
/test/integrationtest.adoc (integration test concept for the project)
/test/test.adoc (software test concept for the project)

/test/validation.adoc (validation concept for the project)
/test/protocols/YYYYMMDD-type-tester.adoc (test execution records)
(e.g. 20160501-Integration-DonaldDuck.adoc)

/dirX (directory for module X)
/dirX/* (follow maven conventions from here)
/dirX/src/site/resources/arch/design.adoc (design and mapping to project
architecture)
/dirX/src/site/resources/arch/model/* (UML tool files)
/dirX/src/site/resources/arch/images/* (UML diagram exports and other image files)
/dirX/src/site/resources/reviews/YYYYMMDD-scope-type-author.adoc (review records)
(e.g. 20160429-ControllerComponent-Peer-ScroogeMcDuck.adoc)
/dirX/src/test/resources/specs/moduletest.adoc (test concept for the module)
/dirX/src/test/technology/* (test code, e.g. JUnit code in /dirX/src/test/java/*)
/dirX/src/test/resources/protocols/YYYYMMDD-scope-type-tester.adoc (test exec
records)
(e.g. 20160430-ControllerComponent-Module-DonaldDuck.adoc)

The names of the modules (here: “dirX”) shall be taken from the overall architecture
definitions.

openKONSEQUENZ Quality Committee Handbook 18/25

B. Coding Guidelines

The overall technology stack of openKonsequenz is not yet defined. The following guidelines
are subject to change. (In the future, they may be put in another document for easier
version control.)
The following list of coding guidelines shall be adhered to:
Java

® https://google.github.io/styleguide/javaguide.html

e www.securecoding.cert.org/confluence/display/java
e htip://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html

e hitps://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
JavaScript
e https://google.github.io/styleguide/javascriptguide.xml

e http://www.w3schools.com/js/js_conventions.asp
SQL

e http://www.sqglstyle.guide/
XML

e https://google.github.io/styleguide/xmistyle.html
JSON

e https://google.github.io/styleguide/jsoncstyleguide.xml

The following list of metrics shall be calculated during the development:
e Size of code base
e Comment ratio
e Cyclomatic complexity
e Test coverage (line and branch)
Additional pointers to good practice:
e https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=0WASP
Top_10_for_2013
e https://cwe.mitre.org/top25/index.html

Naming Convention for artifacts

To comply with the eclipse guidelines and to avoid name collisions the following rules
should be considered. They can be used to determine the designators for:
® Java projects
Java packages
Java main-classes
maven-artifacts (groupld, artifactld, name)

paths (file-system)

openKONSEQUENZ Quality Committee Handbook 19/25

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
http://www.w3schools.com/js/js_conventions.asp
https://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html
https://google.github.io/styleguide/javascriptguide.xml
https://google.github.io/styleguide/javaguide.html
http://www.sqlstyle.guide/
https://google.github.io/styleguide/jsoncstyleguide.xml
https://cwe.mitre.org/top25/index.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
https://google.github.io/styleguide/xmlstyle.html
http://www.securecoding.cert.org/confluence/display/java

For The placeholder “com.company” can be replaced by your company prefix.

Common Java artifacts

rule examples

prefix {{[com.company | ® com.company
org.eclipse.openk]}} ® org.eclipse.openk

group-id {{prefix}} e com.company

org.eclipse.openk

artefact-id |common e com.company.common
org.eclipse.openk.common

name {{group-id}}.{{artefact-id}} ® Ccom.company.common
org.eclipse.openk.common

package {{prefix}}.{{artefact-id}} ® Ccom.company.common
(“ﬂthoutlJ) ® org.eclipse.openk.common
CIM Versions
rule example
preﬁx {{[com.company| ® com.company.cim
org.eclipse.openk]}}.cim ® org.eclipse.openk.cim
group-id {{prefix}} ® com.company.cim

® org.eclipse.openk.cim

artefact-id |cim{{major-version}}v{{minor-v |e® ciml6v26a
ersion}} ® ciml7v07

name {{group-id}}.{{artefact-id}} ® com.company.cim.ciml6v26a
® org.eclipse.openk.cim.ciml7vO0

package {{prefix}}.{{artefact-id}} ® com.company.cim.cimlév26é
(mﬁthout‘J) ® org.eclipse.openk.cim.ciml7v0

openKONSEQUENZ Quality Committee Handbook 20/25

CIM Profiles

rule example
prefix {{[com.company | com.company.cim.profile
org.eclipse.openk]}}.cim.prof org.eclipse.openk.cim.profile
ile
group-id | {{prefix}} com.company.cim.profile
org.eclipse.openk.cim.profile
artefact-id | {{profile}} entso-e
openkonsequenz
name {{group-id}}.{{artefact-id}} com.company.cim.profile.entso-
e
org.eclipse.openk.cim.profile.
openkonsequenz
path {{name}} com.company.cim.profile.entso-
e
org.eclipse.openk.cim.profile.
openkonsequenz
package {{prefix}}.{{artefact-id}} com.company.cim.profile.entsoe
(MﬁthOUt'J) org.eclipse.openk.cim.profile.
openkonsequenz
oK Service Artifacts
rule example

prefix

{{[com.company |
org.eclipse]}}.openk

com.company.openk
org.eclipse.openk

module group

({{owner}t} != "oK") ?

company-service

{{owner}}-service service
service

component level [common | core | model adapter
| logic | adapter |
infrastructure |
service]

group-id

{{prefix}}.{{module
group}}

com.company.openk.company-ser
vice
org.eclipse.openk.service

openKONSEQUENZ Quality Committee Handbook

21/25

artefact-id { {module company-service-model
group} }-{{component service-model
level}}
name {{group-id}}.{{artefact com.company.openk.company-ser
-id}} vice.company-service-model
org.eclipse.openk.service.ser
vice-model
path {{group-id}}/{{componen com.company.openk.btc-service

t level}}

/model
org.eclipse.openk.service/mod
el

package (without
l_l)

{ {group-id}}.{{componen
t level}}

com.company.openk.companyserv
ice.model
org.eclipse.openk.service.mod
el

app-main-class {{owner}}Service CompanyService
(CamelCase) Service
oK Core Modules
rule example

preﬁx {{[com.company | com.company.openk.core
org.eclipse]}}.openk.co org.eclipse.openk.core
re
module group ({{owner}} != "oK") ? company-module-name
{{owner}}-{{module—-name module—-name
}} ¢ {{core-module}}
con1ponent|eve| [common | core | model adapter

| logic | adapter |

infrastructure |
service]
groupqd {{prefix}}.{{module com.company.openk.core.compan
group}} y.module—-name
org.eclipse.openk.core.module
-name
artefact-id { {module company-module-name-service
group} }-{{component module-name-service
level}}
name {{group-id}}.{{artefact com.company.openk.core.compan
-id}} y-module-name.company-module-

name-service

openKONSEQUENZ Quality Committee Handbook

22/25

org.eclipse.openk.core.module
-name.module-name-service

path

{ {group-id}}/{{componen
t level}}

com.company.openk.core.compan

y-module-name/service

package (without
l_’)

{ {group-id}} . { {componen
t level}}

com.company.openk.core.module
name.service
org.eclipse.openk.core.module
name.service

app-main-class
(CamelCase)

{{module group}}Service

CompanyModuleNameService
ModuleNameService

oK User Modules

rule

example

prefix

{{[com.company |
org.eclipse]}}.openk.ap

p

com.company.openk.app
org.eclipse.openk.app

| logic | adapter |

module group ({{owner}} != "oK") 2 company-app-name
{{owner}}-{{app—name}} app-name
{{app-name}}
component level | [common | core | model adapter

t level}}

infrastructure |
service]
group-id {{prefix}}.{{module com.company.openk.app.company
group}} —app-name
org.eclipse.openk.app.app-nam
e
artefact-id { {module company-app-name-adapter
group} }—{ {component app-name-adapter
level}}
name {{group-id}}.{{artefact com.company.openk.app.company
-id}} —app-name.company-app-name
org.eclipse.openk.app.app-nam
e
path {{group-id}}/{{componen com.company.openk.app.company

-app-name/adapter
org.eclipse.openk.app.app-nam
e/adapter

openKONSEQUENZ Quality Committee Handbook

23/25

package (without
l_’)

{ {group-1id}} . { {componen
t level}}

com.company.openk.app.company
appname.adapter
org.eclipse.openk.app.appname
.adapter

app-main-class
(CamelCase)

{{module group}}Service

CompanyAppNameService
AppNameService

oK Source System

rule

example

prefix

{{[com.company |
org.eclipse]}}.openk.so
urce-system

com.company.openk.source-syst
em
org.eclipse.openk.source-syst
em

module group

({{customer-name}} !=
"oK") 7
{{customer—-name}}-{{sou
rce-system-name}}
{{source-system—-name}}

customer-name-topology
mock-up-topology

component level [common | core | model adapter
| logic | adapter |
infrastructure |
service]
groupdd {{prefix}}.{{module com.company.openk.source-syst
group}} em.customer-name-topology
org.eclispe.openk.source-syst
em.mock-up-topology
artefact-id { {module customer-name-topology-adapte
group} }—{ {component r
level}} mock-up-topology-adapter
name {{group-id}}.{{artefact com.company.openk.source-syst
-id}} em.customer-name-topology.cus
tomer-name-topology-adapter
org.eclispe.openk.source-syst
em.mock-up-topoloy-adapter
path {{group-id}}/{{artefact com.company.openk.source-syst

-id}}

em.customer—-name-topology/
adapter
org.eclipse.openk.source-syst
em.mock-up-topology/ adapter

package (without
l_l)

{ {group-id}}. { {componen
t level}}

com.company.openk.sourcesyste
m.customernametopology.adapte
r

openKONSEQUENZ Quality Committee Handbook

24/25

® org.eclispe.openk.sourcesyste
m.mockuptopology.adapter

app-main-class(Ca {{module group}}Service | ® CustomerNameTopologyService

meICase) MockUpTopologyService

openKONSEQUENZ Quality Committee Handbook 25/25

